Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Hardkernel LCD screen doesn't have backlight controls (X2/wheezy/3.8 kernel) #50

Closed
declanmalone opened this issue Jun 6, 2014 · 0 comments

Comments

@declanmalone
Copy link

CONFIG_BACKLIGHT_PWM is not set in the current/latest kernel. Turning it on doesn't help

zcat /proc/config.gz |grep BACKLIGHT
CONFIG_SAMSUNG_DEV_BACKLIGHT=y
# CONFIG_FB_BACKLIGHT is not set
CONFIG_BACKLIGHT_LCD_SUPPORT=y
CONFIG_BACKLIGHT_CLASS_DEVICE=y
# CONFIG_BACKLIGHT_GENERIC is not set
CONFIG_BACKLIGHT_PWM=m   <--- turned on
# CONFIG_BACKLIGHT_ADP8860 is not set
# CONFIG_BACKLIGHT_ADP8870 is not set
# CONFIG_BACKLIGHT_LM3630 is not set
# CONFIG_BACKLIGHT_LM3639 is not set
# CONFIG_BACKLIGHT_LP855X is not set
CONFIG_HID_PICOLCD_BACKLIGHT=y
CONFIG_LEDS_TRIGGER_BACKLIGHT=y

Boot messages:

$ dmesg | grep back
[    3.977660] pwm-backlight pwm-backlight.0: unable to request PWM, trying legacy API
[    3.982264] pwm-backlight pwm-backlight.0: unable to request legacy PWM
[    4.110729] platform pwm-backlight.0: Driver pwm-backlight requests probe deferral
[    4.289334] pwm-backlight pwm-backlight.0: unable to request PWM, trying legacy API
[    4.302308] pwm-backlight pwm-backlight.0: unable to request legacy PWM
[    4.311763] platform pwm-backlight.0: Driver pwm-backlight requests probe deferral
[    4.386515] pwm-backlight pwm-backlight.0: unable to request PWM, trying legacy API
[    4.394205] pwm-backlight pwm-backlight.0: unable to request legacy PWM
[    4.400775] platform pwm-backlight.0: Driver pwm-backlight requests probe deferral

Older XU kernel (latest, 3.4.91) has /sys/class/ entry for pwm-backlight.0 with working control files. This kernel has the directory, but no controls.

@mdrjr mdrjr closed this as completed Feb 5, 2016
mihailescu2m pushed a commit to mihailescu2m/linux that referenced this issue Mar 7, 2019
scsi_device_quiesce() and scsi_device_resume() are called during
system-wide suspend and resume. scsi_device_quiesce() only succeeds for
SCSI devices that are in one of the RUNNING, OFFLINE or TRANSPORT_OFFLINE
states (see also scsi_set_device_state()).  This patch avoids that the
following warning is triggered when resuming a system for which quiescing a
SCSI device failed:

WARNING: CPU: 2 PID: 11303 at drivers/scsi/scsi_lib.c:2600 scsi_device_resume+0x4f/0x58
CPU: 2 PID: 11303 Comm: kworker/u8:70 Not tainted 5.0.0-rc1+ hardkernel#50
Hardware name: LENOVO 80E3/Lancer 5B2, BIOS A2CN45WW(V2.13) 08/04/2016
Workqueue: events_unbound async_run_entry_fn
Call Trace:
 scsi_dev_type_resume+0x2e/0x60
 async_run_entry_fn+0x32/0xd8
 process_one_work+0x1f4/0x420
 worker_thread+0x28/0x3c0
 kthread+0x118/0x130
 ret_from_fork+0x22/0x40

Cc: Przemek Socha <soprwa@gmail.com>
Reported-by: Przemek Socha <soprwa@gmail.com>
Fixes: 3a0a529 ("block, scsi: Make SCSI quiesce and resume work reliably") # v4.15
Signed-off-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
mdrjr pushed a commit that referenced this issue Aug 5, 2019
[ Upstream commit 3f167e1 ]

ipv4_pdp_add() is called in RCU read-side critical section.
So GFP_KERNEL should not be used in the function.
This patch make ipv4_pdp_add() to use GFP_ATOMIC instead of GFP_KERNEL.

Test commands:
gtp-link add gtp1 &
gtp-tunnel add gtp1 v1 100 200 1.1.1.1 2.2.2.2

Splat looks like:
[  130.618881] =============================
[  130.626382] WARNING: suspicious RCU usage
[  130.626994] 5.2.0-rc6+ #50 Not tainted
[  130.627622] -----------------------------
[  130.628223] ./include/linux/rcupdate.h:266 Illegal context switch in RCU read-side critical section!
[  130.629684]
[  130.629684] other info that might help us debug this:
[  130.629684]
[  130.631022]
[  130.631022] rcu_scheduler_active = 2, debug_locks = 1
[  130.632136] 4 locks held by gtp-tunnel/1025:
[  130.632925]  #0: 000000002b93c8b7 (cb_lock){++++}, at: genl_rcv+0x15/0x40
[  130.634159]  #1: 00000000f17bc999 (genl_mutex){+.+.}, at: genl_rcv_msg+0xfb/0x130
[  130.635487]  #2: 00000000c644ed8e (rtnl_mutex){+.+.}, at: gtp_genl_new_pdp+0x18c/0x1150 [gtp]
[  130.636936]  #3: 0000000007a1cde7 (rcu_read_lock){....}, at: gtp_genl_new_pdp+0x187/0x1150 [gtp]
[  130.638348]
[  130.638348] stack backtrace:
[  130.639062] CPU: 1 PID: 1025 Comm: gtp-tunnel Not tainted 5.2.0-rc6+ #50
[  130.641318] Call Trace:
[  130.641707]  dump_stack+0x7c/0xbb
[  130.642252]  ___might_sleep+0x2c0/0x3b0
[  130.642862]  kmem_cache_alloc_trace+0x1cd/0x2b0
[  130.643591]  gtp_genl_new_pdp+0x6c5/0x1150 [gtp]
[  130.644371]  genl_family_rcv_msg+0x63a/0x1030
[  130.645074]  ? mutex_lock_io_nested+0x1090/0x1090
[  130.645845]  ? genl_unregister_family+0x630/0x630
[  130.646592]  ? debug_show_all_locks+0x2d0/0x2d0
[  130.647293]  ? check_flags.part.40+0x440/0x440
[  130.648099]  genl_rcv_msg+0xa3/0x130
[ ... ]

Fixes: 459aa66 ("gtp: add initial driver for datapath of GPRS Tunneling Protocol (GTP-U)")
Signed-off-by: Taehee Yoo <ap420073@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
mdrjr pushed a commit that referenced this issue Aug 5, 2019
[ Upstream commit a2bed90 ]

Current gtp_newlink() could be called after unregister_pernet_subsys().
gtp_newlink() uses gtp_net but it can be destroyed by
unregister_pernet_subsys().
So unregister_pernet_subsys() should be called after
rtnl_link_unregister().

Test commands:
   #SHELL 1
   while :
   do
	   for i in {1..5}
	   do
		./gtp-link add gtp$i &
	   done
	   killall gtp-link
   done

   #SHELL 2
   while :
   do
	modprobe -rv gtp
   done

Splat looks like:
[  753.176631] BUG: KASAN: use-after-free in gtp_newlink+0x9b4/0xa5c [gtp]
[  753.177722] Read of size 8 at addr ffff8880d48f2458 by task gtp-link/7126
[  753.179082] CPU: 0 PID: 7126 Comm: gtp-link Tainted: G        W         5.2.0-rc6+ #50
[  753.185801] Call Trace:
[  753.186264]  dump_stack+0x7c/0xbb
[  753.186863]  ? gtp_newlink+0x9b4/0xa5c [gtp]
[  753.187583]  print_address_description+0xc7/0x240
[  753.188382]  ? gtp_newlink+0x9b4/0xa5c [gtp]
[  753.189097]  ? gtp_newlink+0x9b4/0xa5c [gtp]
[  753.189846]  __kasan_report+0x12a/0x16f
[  753.190542]  ? gtp_newlink+0x9b4/0xa5c [gtp]
[  753.191298]  kasan_report+0xe/0x20
[  753.191893]  gtp_newlink+0x9b4/0xa5c [gtp]
[  753.192580]  ? __netlink_ns_capable+0xc3/0xf0
[  753.193370]  __rtnl_newlink+0xb9f/0x11b0
[ ... ]
[  753.241201] Allocated by task 7186:
[  753.241844]  save_stack+0x19/0x80
[  753.242399]  __kasan_kmalloc.constprop.3+0xa0/0xd0
[  753.243192]  __kmalloc+0x13e/0x300
[  753.243764]  ops_init+0xd6/0x350
[  753.244314]  register_pernet_operations+0x249/0x6f0
[ ... ]
[  753.251770] Freed by task 7178:
[  753.252288]  save_stack+0x19/0x80
[  753.252833]  __kasan_slab_free+0x111/0x150
[  753.253962]  kfree+0xc7/0x280
[  753.254509]  ops_free_list.part.11+0x1c4/0x2d0
[  753.255241]  unregister_pernet_operations+0x262/0x390
[ ... ]
[  753.285883] list_add corruption. next->prev should be prev (ffff8880d48f2458), but was ffff8880d497d878. (next.
[  753.287241] ------------[ cut here ]------------
[  753.287794] kernel BUG at lib/list_debug.c:25!
[  753.288364] invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC KASAN PTI
[  753.289099] CPU: 0 PID: 7126 Comm: gtp-link Tainted: G    B   W         5.2.0-rc6+ #50
[  753.291036] RIP: 0010:__list_add_valid+0x74/0xd0
[  753.291589] Code: 48 39 da 75 27 48 39 f5 74 36 48 39 dd 74 31 48 83 c4 08 b8 01 00 00 00 5b 5d c3 48 89 d9 48b
[  753.293779] RSP: 0018:ffff8880cae8f398 EFLAGS: 00010286
[  753.294401] RAX: 0000000000000075 RBX: ffff8880d497d878 RCX: 0000000000000000
[  753.296260] RDX: 0000000000000075 RSI: 0000000000000008 RDI: ffffed10195d1e69
[  753.297070] RBP: ffff8880cd250ae0 R08: ffffed101b4bff21 R09: ffffed101b4bff21
[  753.297899] R10: 0000000000000001 R11: ffffed101b4bff20 R12: ffff8880d497d878
[  753.298703] R13: 0000000000000000 R14: ffff8880cd250ae0 R15: ffff8880d48f2458
[  753.299564] FS:  00007f5f79805740(0000) GS:ffff8880da400000(0000) knlGS:0000000000000000
[  753.300533] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  753.301231] CR2: 00007fe8c7ef4f10 CR3: 00000000b71a6006 CR4: 00000000000606f0
[  753.302183] Call Trace:
[  753.302530]  gtp_newlink+0x5f6/0xa5c [gtp]
[  753.303037]  ? __netlink_ns_capable+0xc3/0xf0
[  753.303576]  __rtnl_newlink+0xb9f/0x11b0
[  753.304092]  ? rtnl_link_unregister+0x230/0x230

Fixes: 459aa66 ("gtp: add initial driver for datapath of GPRS Tunneling Protocol (GTP-U)")
Signed-off-by: Taehee Yoo <ap420073@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
mdrjr pushed a commit that referenced this issue Aug 29, 2019
[ Upstream commit 3f167e1 ]

ipv4_pdp_add() is called in RCU read-side critical section.
So GFP_KERNEL should not be used in the function.
This patch make ipv4_pdp_add() to use GFP_ATOMIC instead of GFP_KERNEL.

Test commands:
gtp-link add gtp1 &
gtp-tunnel add gtp1 v1 100 200 1.1.1.1 2.2.2.2

Splat looks like:
[  130.618881] =============================
[  130.626382] WARNING: suspicious RCU usage
[  130.626994] 5.2.0-rc6+ #50 Not tainted
[  130.627622] -----------------------------
[  130.628223] ./include/linux/rcupdate.h:266 Illegal context switch in RCU read-side critical section!
[  130.629684]
[  130.629684] other info that might help us debug this:
[  130.629684]
[  130.631022]
[  130.631022] rcu_scheduler_active = 2, debug_locks = 1
[  130.632136] 4 locks held by gtp-tunnel/1025:
[  130.632925]  #0: 000000002b93c8b7 (cb_lock){++++}, at: genl_rcv+0x15/0x40
[  130.634159]  #1: 00000000f17bc999 (genl_mutex){+.+.}, at: genl_rcv_msg+0xfb/0x130
[  130.635487]  #2: 00000000c644ed8e (rtnl_mutex){+.+.}, at: gtp_genl_new_pdp+0x18c/0x1150 [gtp]
[  130.636936]  #3: 0000000007a1cde7 (rcu_read_lock){....}, at: gtp_genl_new_pdp+0x187/0x1150 [gtp]
[  130.638348]
[  130.638348] stack backtrace:
[  130.639062] CPU: 1 PID: 1025 Comm: gtp-tunnel Not tainted 5.2.0-rc6+ #50
[  130.641318] Call Trace:
[  130.641707]  dump_stack+0x7c/0xbb
[  130.642252]  ___might_sleep+0x2c0/0x3b0
[  130.642862]  kmem_cache_alloc_trace+0x1cd/0x2b0
[  130.643591]  gtp_genl_new_pdp+0x6c5/0x1150 [gtp]
[  130.644371]  genl_family_rcv_msg+0x63a/0x1030
[  130.645074]  ? mutex_lock_io_nested+0x1090/0x1090
[  130.645845]  ? genl_unregister_family+0x630/0x630
[  130.646592]  ? debug_show_all_locks+0x2d0/0x2d0
[  130.647293]  ? check_flags.part.40+0x440/0x440
[  130.648099]  genl_rcv_msg+0xa3/0x130
[ ... ]

Fixes: 459aa66 ("gtp: add initial driver for datapath of GPRS Tunneling Protocol (GTP-U)")
Signed-off-by: Taehee Yoo <ap420073@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
mdrjr pushed a commit that referenced this issue Aug 29, 2019
[ Upstream commit 1788b85 ]

gtp_encap_destroy() is called twice.
1. When interface is deleted.
2. When udp socket is destroyed.
either gtp->sk0 or gtp->sk1u could be freed by sock_put() in
gtp_encap_destroy(). so, when gtp_encap_destroy() is called again,
it would uses freed sk pointer.

patch makes gtp_encap_destroy() to set either gtp->sk0 or gtp->sk1u to
null. in addition, both gtp->sk0 and gtp->sk1u pointer are protected
by rtnl_lock. so, rtnl_lock() is added.

Test command:
   gtp-link add gtp1 &
   killall gtp-link
   ip link del gtp1

Splat looks like:
[   83.182767] BUG: KASAN: use-after-free in __lock_acquire+0x3a20/0x46a0
[   83.184128] Read of size 8 at addr ffff8880cc7d5360 by task ip/1008
[   83.185567] CPU: 1 PID: 1008 Comm: ip Not tainted 5.2.0-rc6+ #50
[   83.188469] Call Trace:
[ ... ]
[   83.200126]  lock_acquire+0x141/0x380
[   83.200575]  ? lock_sock_nested+0x3a/0xf0
[   83.201069]  _raw_spin_lock_bh+0x38/0x70
[   83.201551]  ? lock_sock_nested+0x3a/0xf0
[   83.202044]  lock_sock_nested+0x3a/0xf0
[   83.202520]  gtp_encap_destroy+0x18/0xe0 [gtp]
[   83.203065]  gtp_encap_disable.isra.14+0x13/0x50 [gtp]
[   83.203687]  gtp_dellink+0x56/0x170 [gtp]
[   83.204190]  rtnl_delete_link+0xb4/0x100
[ ... ]
[   83.236513] Allocated by task 976:
[   83.236925]  save_stack+0x19/0x80
[   83.237332]  __kasan_kmalloc.constprop.3+0xa0/0xd0
[   83.237894]  kmem_cache_alloc+0xd8/0x280
[   83.238360]  sk_prot_alloc.isra.42+0x50/0x200
[   83.238874]  sk_alloc+0x32/0x940
[   83.239264]  inet_create+0x283/0xc20
[   83.239684]  __sock_create+0x2dd/0x540
[   83.240136]  __sys_socket+0xca/0x1a0
[   83.240550]  __x64_sys_socket+0x6f/0xb0
[   83.240998]  do_syscall_64+0x9c/0x450
[   83.241466]  entry_SYSCALL_64_after_hwframe+0x49/0xbe
[   83.242061]
[   83.242249] Freed by task 0:
[   83.242616]  save_stack+0x19/0x80
[   83.243013]  __kasan_slab_free+0x111/0x150
[   83.243498]  kmem_cache_free+0x89/0x250
[   83.244444]  __sk_destruct+0x38f/0x5a0
[   83.245366]  rcu_core+0x7e9/0x1c20
[   83.245766]  __do_softirq+0x213/0x8fa

Fixes: 1e3a3ab ("gtp: make GTP sockets in gtp_newlink optional")
Signed-off-by: Taehee Yoo <ap420073@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
mdrjr pushed a commit that referenced this issue Aug 29, 2019
[ Upstream commit a2bed90 ]

Current gtp_newlink() could be called after unregister_pernet_subsys().
gtp_newlink() uses gtp_net but it can be destroyed by
unregister_pernet_subsys().
So unregister_pernet_subsys() should be called after
rtnl_link_unregister().

Test commands:
   #SHELL 1
   while :
   do
	   for i in {1..5}
	   do
		./gtp-link add gtp$i &
	   done
	   killall gtp-link
   done

   #SHELL 2
   while :
   do
	modprobe -rv gtp
   done

Splat looks like:
[  753.176631] BUG: KASAN: use-after-free in gtp_newlink+0x9b4/0xa5c [gtp]
[  753.177722] Read of size 8 at addr ffff8880d48f2458 by task gtp-link/7126
[  753.179082] CPU: 0 PID: 7126 Comm: gtp-link Tainted: G        W         5.2.0-rc6+ #50
[  753.185801] Call Trace:
[  753.186264]  dump_stack+0x7c/0xbb
[  753.186863]  ? gtp_newlink+0x9b4/0xa5c [gtp]
[  753.187583]  print_address_description+0xc7/0x240
[  753.188382]  ? gtp_newlink+0x9b4/0xa5c [gtp]
[  753.189097]  ? gtp_newlink+0x9b4/0xa5c [gtp]
[  753.189846]  __kasan_report+0x12a/0x16f
[  753.190542]  ? gtp_newlink+0x9b4/0xa5c [gtp]
[  753.191298]  kasan_report+0xe/0x20
[  753.191893]  gtp_newlink+0x9b4/0xa5c [gtp]
[  753.192580]  ? __netlink_ns_capable+0xc3/0xf0
[  753.193370]  __rtnl_newlink+0xb9f/0x11b0
[ ... ]
[  753.241201] Allocated by task 7186:
[  753.241844]  save_stack+0x19/0x80
[  753.242399]  __kasan_kmalloc.constprop.3+0xa0/0xd0
[  753.243192]  __kmalloc+0x13e/0x300
[  753.243764]  ops_init+0xd6/0x350
[  753.244314]  register_pernet_operations+0x249/0x6f0
[ ... ]
[  753.251770] Freed by task 7178:
[  753.252288]  save_stack+0x19/0x80
[  753.252833]  __kasan_slab_free+0x111/0x150
[  753.253962]  kfree+0xc7/0x280
[  753.254509]  ops_free_list.part.11+0x1c4/0x2d0
[  753.255241]  unregister_pernet_operations+0x262/0x390
[ ... ]
[  753.285883] list_add corruption. next->prev should be prev (ffff8880d48f2458), but was ffff8880d497d878. (next.
[  753.287241] ------------[ cut here ]------------
[  753.287794] kernel BUG at lib/list_debug.c:25!
[  753.288364] invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC KASAN PTI
[  753.289099] CPU: 0 PID: 7126 Comm: gtp-link Tainted: G    B   W         5.2.0-rc6+ #50
[  753.291036] RIP: 0010:__list_add_valid+0x74/0xd0
[  753.291589] Code: 48 39 da 75 27 48 39 f5 74 36 48 39 dd 74 31 48 83 c4 08 b8 01 00 00 00 5b 5d c3 48 89 d9 48b
[  753.293779] RSP: 0018:ffff8880cae8f398 EFLAGS: 00010286
[  753.294401] RAX: 0000000000000075 RBX: ffff8880d497d878 RCX: 0000000000000000
[  753.296260] RDX: 0000000000000075 RSI: 0000000000000008 RDI: ffffed10195d1e69
[  753.297070] RBP: ffff8880cd250ae0 R08: ffffed101b4bff21 R09: ffffed101b4bff21
[  753.297899] R10: 0000000000000001 R11: ffffed101b4bff20 R12: ffff8880d497d878
[  753.298703] R13: 0000000000000000 R14: ffff8880cd250ae0 R15: ffff8880d48f2458
[  753.299564] FS:  00007f5f79805740(0000) GS:ffff8880da400000(0000) knlGS:0000000000000000
[  753.300533] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  753.301231] CR2: 00007fe8c7ef4f10 CR3: 00000000b71a6006 CR4: 00000000000606f0
[  753.302183] Call Trace:
[  753.302530]  gtp_newlink+0x5f6/0xa5c [gtp]
[  753.303037]  ? __netlink_ns_capable+0xc3/0xf0
[  753.303576]  __rtnl_newlink+0xb9f/0x11b0
[  753.304092]  ? rtnl_link_unregister+0x230/0x230

Fixes: 459aa66 ("gtp: add initial driver for datapath of GPRS Tunneling Protocol (GTP-U)")
Signed-off-by: Taehee Yoo <ap420073@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Dangku pushed a commit to Dangku/amlogic-linux that referenced this issue Apr 12, 2022
mdrjr pushed a commit that referenced this issue Jun 19, 2022
commit 6c8e2a2 upstream.

Problem:
=======

Userspace might read the zero-page instead of actual data from a direct IO
read on a block device if the buffers have been called madvise(MADV_FREE)
on earlier (this is discussed below) due to a race between page reclaim on
MADV_FREE and blkdev direct IO read.

- Race condition:
  ==============

During page reclaim, the MADV_FREE page check in try_to_unmap_one() checks
if the page is not dirty, then discards its rmap PTE(s) (vs.  remap back
if the page is dirty).

However, after try_to_unmap_one() returns to shrink_page_list(), it might
keep the page _anyway_ if page_ref_freeze() fails (it expects exactly
_one_ page reference, from the isolation for page reclaim).

Well, blkdev_direct_IO() gets references for all pages, and on READ
operations it only sets them dirty _later_.

So, if MADV_FREE'd pages (i.e., not dirty) are used as buffers for direct
IO read from block devices, and page reclaim happens during
__blkdev_direct_IO[_simple]() exactly AFTER bio_iov_iter_get_pages()
returns, but BEFORE the pages are set dirty, the situation happens.

The direct IO read eventually completes.  Now, when userspace reads the
buffers, the PTE is no longer there and the page fault handler
do_anonymous_page() services that with the zero-page, NOT the data!

A synthetic reproducer is provided.

- Page faults:
  ===========

If page reclaim happens BEFORE bio_iov_iter_get_pages() the issue doesn't
happen, because that faults-in all pages as writeable, so
do_anonymous_page() sets up a new page/rmap/PTE, and that is used by
direct IO.  The userspace reads don't fault as the PTE is there (thus
zero-page is not used/setup).

But if page reclaim happens AFTER it / BEFORE setting pages dirty, the PTE
is no longer there; the subsequent page faults can't help:

The data-read from the block device probably won't generate faults due to
DMA (no MMU) but even in the case it wouldn't use DMA, that happens on
different virtual addresses (not user-mapped addresses) because `struct
bio_vec` stores `struct page` to figure addresses out (which are different
from user-mapped addresses) for the read.

Thus userspace reads (to user-mapped addresses) still fault, then
do_anonymous_page() gets another `struct page` that would address/ map to
other memory than the `struct page` used by `struct bio_vec` for the read.
(The original `struct page` is not available, since it wasn't freed, as
page_ref_freeze() failed due to more page refs.  And even if it were
available, its data cannot be trusted anymore.)

Solution:
========

One solution is to check for the expected page reference count in
try_to_unmap_one().

There should be one reference from the isolation (that is also checked in
shrink_page_list() with page_ref_freeze()) plus one or more references
from page mapping(s) (put in discard: label).  Further references mean
that rmap/PTE cannot be unmapped/nuked.

(Note: there might be more than one reference from mapping due to
fork()/clone() without CLONE_VM, which use the same `struct page` for
references, until the copy-on-write page gets copied.)

So, additional page references (e.g., from direct IO read) now prevent the
rmap/PTE from being unmapped/dropped; similarly to the page is not freed
per shrink_page_list()/page_ref_freeze()).

- Races and Barriers:
  ==================

The new check in try_to_unmap_one() should be safe in races with
bio_iov_iter_get_pages() in get_user_pages() fast and slow paths, as it's
done under the PTE lock.

The fast path doesn't take the lock, but it checks if the PTE has changed
and if so, it drops the reference and leaves the page for the slow path
(which does take that lock).

The fast path requires synchronization w/ full memory barrier: it writes
the page reference count first then it reads the PTE later, while
try_to_unmap() writes PTE first then it reads page refcount.

And a second barrier is needed, as the page dirty flag should not be read
before the page reference count (as in __remove_mapping()).  (This can be
a load memory barrier only; no writes are involved.)

Call stack/comments:

- try_to_unmap_one()
  - page_vma_mapped_walk()
    - map_pte()			# see pte_offset_map_lock():
        pte_offset_map()
        spin_lock()

  - ptep_get_and_clear()	# write PTE
  - smp_mb()			# (new barrier) GUP fast path
  - page_ref_count()		# (new check) read refcount

  - page_vma_mapped_walk_done()	# see pte_unmap_unlock():
      pte_unmap()
      spin_unlock()

- bio_iov_iter_get_pages()
  - __bio_iov_iter_get_pages()
    - iov_iter_get_pages()
      - get_user_pages_fast()
        - internal_get_user_pages_fast()

          # fast path
          - lockless_pages_from_mm()
            - gup_{pgd,p4d,pud,pmd,pte}_range()
                ptep = pte_offset_map()		# not _lock()
                pte = ptep_get_lockless(ptep)

                page = pte_page(pte)
                try_grab_compound_head(page)	# inc refcount
                                            	# (RMW/barrier
                                             	#  on success)

                if (pte_val(pte) != pte_val(*ptep)) # read PTE
                        put_compound_head(page) # dec refcount
                        			# go slow path

          # slow path
          - __gup_longterm_unlocked()
            - get_user_pages_unlocked()
              - __get_user_pages_locked()
                - __get_user_pages()
                  - follow_{page,p4d,pud,pmd}_mask()
                    - follow_page_pte()
                        ptep = pte_offset_map_lock()
                        pte = *ptep
                        page = vm_normal_page(pte)
                        try_grab_page(page)	# inc refcount
                        pte_unmap_unlock()

- Huge Pages:
  ==========

Regarding transparent hugepages, that logic shouldn't change, as MADV_FREE
(aka lazyfree) pages are PageAnon() && !PageSwapBacked()
(madvise_free_pte_range() -> mark_page_lazyfree() -> lru_lazyfree_fn())
thus should reach shrink_page_list() -> split_huge_page_to_list() before
try_to_unmap[_one](), so it deals with normal pages only.

(And in case unlikely/TTU_SPLIT_HUGE_PMD/split_huge_pmd_address() happens,
which should not or be rare, the page refcount should be greater than
mapcount: the head page is referenced by tail pages.  That also prevents
checking the head `page` then incorrectly call page_remove_rmap(subpage)
for a tail page, that isn't even in the shrink_page_list()'s page_list (an
effect of split huge pmd/pmvw), as it might happen today in this unlikely
scenario.)

MADV_FREE'd buffers:
===================

So, back to the "if MADV_FREE pages are used as buffers" note.  The case
is arguable, and subject to multiple interpretations.

The madvise(2) manual page on the MADV_FREE advice value says:

1) 'After a successful MADV_FREE ... data will be lost when
   the kernel frees the pages.'
2) 'the free operation will be canceled if the caller writes
   into the page' / 'subsequent writes ... will succeed and
   then [the] kernel cannot free those dirtied pages'
3) 'If there is no subsequent write, the kernel can free the
   pages at any time.'

Thoughts, questions, considerations... respectively:

1) Since the kernel didn't actually free the page (page_ref_freeze()
   failed), should the data not have been lost? (on userspace read.)
2) Should writes performed by the direct IO read be able to cancel
   the free operation?
   - Should the direct IO read be considered as 'the caller' too,
     as it's been requested by 'the caller'?
   - Should the bio technique to dirty pages on return to userspace
     (bio_check_pages_dirty() is called/used by __blkdev_direct_IO())
     be considered in another/special way here?
3) Should an upcoming write from a previously requested direct IO
   read be considered as a subsequent write, so the kernel should
   not free the pages? (as it's known at the time of page reclaim.)

And lastly:

Technically, the last point would seem a reasonable consideration and
balance, as the madvise(2) manual page apparently (and fairly) seem to
assume that 'writes' are memory access from the userspace process (not
explicitly considering writes from the kernel or its corner cases; again,
fairly)..  plus the kernel fix implementation for the corner case of the
largely 'non-atomic write' encompassed by a direct IO read operation, is
relatively simple; and it helps.

Reproducer:
==========

@ test.c (simplified, but works)

	#define _GNU_SOURCE
	#include <fcntl.h>
	#include <stdio.h>
	#include <unistd.h>
	#include <sys/mman.h>

	int main() {
		int fd, i;
		char *buf;

		fd = open(DEV, O_RDONLY | O_DIRECT);

		buf = mmap(NULL, BUF_SIZE, PROT_READ | PROT_WRITE,
                	   MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);

		for (i = 0; i < BUF_SIZE; i += PAGE_SIZE)
			buf[i] = 1; // init to non-zero

		madvise(buf, BUF_SIZE, MADV_FREE);

		read(fd, buf, BUF_SIZE);

		for (i = 0; i < BUF_SIZE; i += PAGE_SIZE)
			printf("%p: 0x%x\n", &buf[i], buf[i]);

		return 0;
	}

@ block/fops.c (formerly fs/block_dev.c)

	+#include <linux/swap.h>
	...
	... __blkdev_direct_IO[_simple](...)
	{
	...
	+	if (!strcmp(current->comm, "good"))
	+		shrink_all_memory(ULONG_MAX);
	+
         	ret = bio_iov_iter_get_pages(...);
	+
	+	if (!strcmp(current->comm, "bad"))
	+		shrink_all_memory(ULONG_MAX);
	...
	}

@ shell

        # NUM_PAGES=4
        # PAGE_SIZE=$(getconf PAGE_SIZE)

        # yes | dd of=test.img bs=${PAGE_SIZE} count=${NUM_PAGES}
        # DEV=$(losetup -f --show test.img)

        # gcc -DDEV=\"$DEV\" \
              -DBUF_SIZE=$((PAGE_SIZE * NUM_PAGES)) \
              -DPAGE_SIZE=${PAGE_SIZE} \
               test.c -o test

        # od -tx1 $DEV
        0000000 79 0a 79 0a 79 0a 79 0a 79 0a 79 0a 79 0a 79 0a
        *
        0040000

        # mv test good
        # ./good
        0x7f7c10418000: 0x79
        0x7f7c10419000: 0x79
        0x7f7c1041a000: 0x79
        0x7f7c1041b000: 0x79

        # mv good bad
        # ./bad
        0x7fa1b8050000: 0x0
        0x7fa1b8051000: 0x0
        0x7fa1b8052000: 0x0
        0x7fa1b8053000: 0x0

Note: the issue is consistent on v5.17-rc3, but it's intermittent with the
support of MADV_FREE on v4.5 (60%-70% error; needs swap).  [wrap
do_direct_IO() in do_blockdev_direct_IO() @ fs/direct-io.c].

- v5.17-rc3:

        # for i in {1..1000}; do ./good; done \
            | cut -d: -f2 | sort | uniq -c
           4000  0x79

        # mv good bad
        # for i in {1..1000}; do ./bad; done \
            | cut -d: -f2 | sort | uniq -c
           4000  0x0

        # free | grep Swap
        Swap:             0           0           0

- v4.5:

        # for i in {1..1000}; do ./good; done \
            | cut -d: -f2 | sort | uniq -c
           4000  0x79

        # mv good bad
        # for i in {1..1000}; do ./bad; done \
            | cut -d: -f2 | sort | uniq -c
           2702  0x0
           1298  0x79

        # swapoff -av
        swapoff /swap

        # for i in {1..1000}; do ./bad; done \
            | cut -d: -f2 | sort | uniq -c
           4000  0x79

Ceph/TCMalloc:
=============

For documentation purposes, the use case driving the analysis/fix is Ceph
on Ubuntu 18.04, as the TCMalloc library there still uses MADV_FREE to
release unused memory to the system from the mmap'ed page heap (might be
committed back/used again; it's not munmap'ed.) - PageHeap::DecommitSpan()
-> TCMalloc_SystemRelease() -> madvise() - PageHeap::CommitSpan() ->
TCMalloc_SystemCommit() -> do nothing.

Note: TCMalloc switched back to MADV_DONTNEED a few commits after the
release in Ubuntu 18.04 (google-perftools/gperftools 2.5), so the issue
just 'disappeared' on Ceph on later Ubuntu releases but is still present
in the kernel, and can be hit by other use cases.

The observed issue seems to be the old Ceph bug #22464 [1], where checksum
mismatches are observed (and instrumentation with buffer dumps shows
zero-pages read from mmap'ed/MADV_FREE'd page ranges).

The issue in Ceph was reasonably deemed a kernel bug (comment #50) and
mostly worked around with a retry mechanism, but other parts of Ceph could
still hit that (rocksdb).  Anyway, it's less likely to be hit again as
TCMalloc switched out of MADV_FREE by default.

(Some kernel versions/reports from the Ceph bug, and relation with
the MADV_FREE introduction/changes; TCMalloc versions not checked.)
- 4.4 good
- 4.5 (madv_free: introduction)
- 4.9 bad
- 4.10 good? maybe a swapless system
- 4.12 (madv_free: no longer free instantly on swapless systems)
- 4.13 bad

[1] https://tracker.ceph.com/issues/22464

Thanks:
======

Several people contributed to analysis/discussions/tests/reproducers in
the first stages when drilling down on ceph/tcmalloc/linux kernel:

- Dan Hill
- Dan Streetman
- Dongdong Tao
- Gavin Guo
- Gerald Yang
- Heitor Alves de Siqueira
- Ioanna Alifieraki
- Jay Vosburgh
- Matthew Ruffell
- Ponnuvel Palaniyappan

Reviews, suggestions, corrections, comments:

- Minchan Kim
- Yu Zhao
- Huang, Ying
- John Hubbard
- Christoph Hellwig

[mfo@canonical.com: v4]
  Link: https://lkml.kernel.org/r/20220209202659.183418-1-mfo@canonical.comLink: https://lkml.kernel.org/r/20220131230255.789059-1-mfo@canonical.com

Fixes: 802a3a9 ("mm: reclaim MADV_FREE pages")
Signed-off-by: Mauricio Faria de Oliveira <mfo@canonical.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Dan Hill <daniel.hill@canonical.com>
Cc: Dan Streetman <dan.streetman@canonical.com>
Cc: Dongdong Tao <dongdong.tao@canonical.com>
Cc: Gavin Guo <gavin.guo@canonical.com>
Cc: Gerald Yang <gerald.yang@canonical.com>
Cc: Heitor Alves de Siqueira <halves@canonical.com>
Cc: Ioanna Alifieraki <ioanna-maria.alifieraki@canonical.com>
Cc: Jay Vosburgh <jay.vosburgh@canonical.com>
Cc: Matthew Ruffell <matthew.ruffell@canonical.com>
Cc: Ponnuvel Palaniyappan <ponnuvel.palaniyappan@canonical.com>
Cc: <stable@vger.kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[mfo: backport: replace folio/test_flag with page/flag equivalents;
 different conditional needed: from PageSwapBacked() to TTU_LZFREE;
 real Fixes: 854e9ed ("mm: support madvise(MADV_FREE)") in v4.]
Signed-off-by: Mauricio Faria de Oliveira <mfo@canonical.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants