Skip to content

Commit

Permalink
DOC: update the docstring of pandas.DataFrame.from_dict (pandas-dev#2…
Browse files Browse the repository at this point in the history
  • Loading branch information
David Adrián Cañones Castellano authored and jorisvandenbossche committed Mar 11, 2018
1 parent 62bddec commit 233103f
Showing 1 changed file with 46 additions and 7 deletions.
53 changes: 46 additions & 7 deletions pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -883,27 +883,66 @@ def dot(self, other):
@classmethod
def from_dict(cls, data, orient='columns', dtype=None, columns=None):
"""
Construct DataFrame from dict of array-like or dicts
Construct DataFrame from dict of array-like or dicts.
Creates DataFrame object from dictionary by columns or by index
allowing dtype specification.
Parameters
----------
data : dict
{field : array-like} or {field : dict}
Of the form {field : array-like} or {field : dict}.
orient : {'columns', 'index'}, default 'columns'
The "orientation" of the data. If the keys of the passed dict
should be the columns of the resulting DataFrame, pass 'columns'
(default). Otherwise if the keys should be rows, pass 'index'.
dtype : dtype, default None
Data type to force, otherwise infer
columns: list, default None
Column labels to use when orient='index'. Raises a ValueError
if used with orient='columns'
Data type to force, otherwise infer.
columns : list, default None
Column labels to use when ``orient='index'``. Raises a ValueError
if used with ``orient='columns'``.
.. versionadded:: 0.23.0
Returns
-------
DataFrame
pandas.DataFrame
See Also
--------
DataFrame.from_records : DataFrame from ndarray (structured
dtype), list of tuples, dict, or DataFrame
DataFrame : DataFrame object creation using constructor
Examples
--------
By default the keys of the dict become the DataFrame columns:
>>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']}
>>> pd.DataFrame.from_dict(data)
col_1 col_2
0 3 a
1 2 b
2 1 c
3 0 d
Specify ``orient='index'`` to create the DataFrame using dictionary
keys as rows:
>>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']}
>>> pd.DataFrame.from_dict(data, orient='index')
0 1 2 3
row_1 3 2 1 0
row_2 a b c d
When using the 'index' orientation, the column names can be
specified manually:
>>> pd.DataFrame.from_dict(data, orient='index',
... columns=['A', 'B', 'C', 'D'])
A B C D
row_1 3 2 1 0
row_2 a b c d
"""
index = None
orient = orient.lower()
Expand Down

0 comments on commit 233103f

Please sign in to comment.