-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: Introduce ONNX class for High-Quality SAM integration
- Loading branch information
1 parent
46908d0
commit d74b382
Showing
1 changed file
with
187 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,187 @@ | ||
import cv2 | ||
import numpy as np | ||
import onnxruntime | ||
import matplotlib.pyplot as plt | ||
|
||
|
||
class ONNXInference: | ||
def __init__(self, encoder_model_path, decoder_model_path): | ||
self.target_size = 1024 | ||
self.input_size = (684, 1024) | ||
self.initialize_sessions(encoder_model_path, decoder_model_path) | ||
|
||
def initialize_sessions(self, encoder_model_path, decoder_model_path): | ||
providers = [p for p in onnxruntime.get_available_providers( | ||
) if p != "TensorrtExecutionProvider"] | ||
self.encoder_session = onnxruntime.InferenceSession( | ||
encoder_model_path, providers=providers) | ||
self.encoder_input_name = self.encoder_session.get_inputs()[0].name | ||
self.decoder_session = onnxruntime.InferenceSession( | ||
decoder_model_path, providers=providers) | ||
|
||
def get_input_points(self, prompt): | ||
points, labels = [], [] | ||
for mark in prompt: | ||
if mark["type"] == "point": | ||
points.append(mark["data"]) | ||
labels.append(mark["label"]) | ||
elif mark["type"] == "rectangle": | ||
points.extend([mark["data"][:2], mark["data"][2:]]) | ||
labels.extend([2, 3]) | ||
points, labels = np.array(points), np.array(labels) | ||
return points, labels | ||
|
||
def run_encoder(self, encoder_inputs): | ||
features = self.encoder_session.run(None, encoder_inputs) | ||
image_embeddings, interm_embeddings = features[0], np.stack( | ||
features[1:]) | ||
return image_embeddings, interm_embeddings | ||
|
||
def get_preprocess_shape(self, oldh, oldw, long_side_length): | ||
scale = long_side_length / max(oldh, oldw) | ||
newh, neww = int(oldh * scale + 0.5), int(oldw * scale + 0.5) | ||
return newh, neww | ||
|
||
def apply_coords(self, coords, original_size, target_length): | ||
old_h, old_w = original_size | ||
new_h, new_w = self.get_preprocess_shape(old_h, old_w, target_length) | ||
coords = coords.astype(float) | ||
coords[..., 0] *= new_w / old_w | ||
coords[..., 1] *= new_h / old_h | ||
return coords | ||
|
||
def run_decoder(self, image_embeddings, interm_embeddings, | ||
original_size, transform_matrix, prompt): | ||
input_points, input_labels = self.get_input_points(prompt) | ||
onnx_coord = np.concatenate( | ||
[input_points, np.array([[0.0, 0.0]])], axis=0)[None, :, :] | ||
onnx_label = np.concatenate( | ||
[input_labels, np.array([-1])], axis=0)[None, :].astype(np.float32) | ||
onnx_coord = self.apply_coords( | ||
onnx_coord, self.input_size, self.target_size).astype(np.float32) | ||
onnx_coord = np.concatenate([onnx_coord, np.ones( | ||
(1, onnx_coord.shape[1], 1), dtype=np.float32)], axis=2) | ||
onnx_coord = np.matmul(onnx_coord, transform_matrix.T) | ||
onnx_coord = onnx_coord[:, :, :2].astype(np.float32) | ||
onnx_mask_input = np.zeros((1, 1, 256, 256), dtype=np.float32) | ||
onnx_has_mask_input = np.zeros(1, dtype=np.float32) | ||
decoder_inputs = { | ||
"image_embeddings": image_embeddings, | ||
"interm_embeddings": interm_embeddings, | ||
"point_coords": onnx_coord, | ||
"point_labels": onnx_label, | ||
"mask_input": onnx_mask_input, | ||
"has_mask_input": onnx_has_mask_input, | ||
"orig_im_size": np.array(self.input_size, dtype=np.float32), | ||
} | ||
masks, _, _ = self.decoder_session.run(None, decoder_inputs) | ||
inv_transform_matrix = np.linalg.inv(transform_matrix) | ||
transformed_masks = self.transform_masks( | ||
masks, original_size, inv_transform_matrix) | ||
return transformed_masks | ||
|
||
def transform_masks(self, masks, original_size, transform_matrix): | ||
output_masks = [] | ||
for batch in range(masks.shape[0]): | ||
batch_masks = [cv2.warpAffine(mask, transform_matrix[:2], | ||
(original_size[1], original_size[0]), | ||
flags=cv2.INTER_LINEAR) for mask in masks[batch]] | ||
output_masks.append(batch_masks) | ||
return np.array(output_masks) | ||
|
||
def encode(self, cv_image): | ||
original_size = cv_image.shape[:2] | ||
scale_x = self.input_size[1] / cv_image.shape[1] | ||
scale_y = self.input_size[0] / cv_image.shape[0] | ||
scale = min(scale_x, scale_y) | ||
transform_matrix = np.array([[scale, 0, 0], [0, scale, 0], [0, 0, 1]]) | ||
cv_image = cv2.warpAffine(cv_image, transform_matrix[:2], | ||
(self.input_size[1], self.input_size[0]), | ||
flags=cv2.INTER_LINEAR) | ||
encoder_inputs = {self.encoder_input_name: cv_image.astype(np.float32)} | ||
image_embeddings, interm_embeddings = self.run_encoder(encoder_inputs) | ||
return { | ||
"image_embeddings": image_embeddings, | ||
"interm_embeddings": interm_embeddings, | ||
"original_size": original_size, | ||
"transform_matrix": transform_matrix, | ||
} | ||
|
||
def predict_masks(self, embedding, prompt): | ||
masks = self.run_decoder(embedding["image_embeddings"], | ||
embedding["interm_embeddings"], | ||
embedding["original_size"], | ||
embedding["transform_matrix"], prompt) | ||
return masks | ||
|
||
def post_process(self, masks): | ||
masks[masks > 0.0] = 255 | ||
masks[masks <= 0.0] = 0 | ||
masks = masks.astype(np.uint8) | ||
contours, _ = cv2.findContours( | ||
masks, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE | ||
) | ||
|
||
approx_contours = [cv2.approxPolyDP( | ||
contour, 0.001 * cv2.arcLength(contour, True), True) | ||
for contour in contours] | ||
|
||
polygon_points_list = [ | ||
approx.reshape(-1, 2).tolist() | ||
for approx in approx_contours if len(approx) >= 3] | ||
|
||
return polygon_points_list | ||
|
||
|
||
class ONNXInferenceWrapper: | ||
def __init__(self, encoder_model_path, decoder_model_path): | ||
self.model = ONNXInference(encoder_model_path, decoder_model_path) | ||
|
||
def infer(self, image_path, prompt): | ||
try: | ||
cv_image = cv2.imread(image_path) | ||
embedding = self.model.encode(cv_image) | ||
masks = self.model.predict_masks(embedding, prompt) | ||
masks = masks.astype(np.uint8) | ||
return masks | ||
except Exception as e: | ||
print(f"Error during inference: {e}") | ||
return None | ||
|
||
|
||
def show_mask(mask, ax, random_color=False): | ||
color = np.random.random(3) if random_color else np.array( | ||
[30/255, 144/255, 255/255, 0.6]) | ||
h, w = mask.shape[-2:] | ||
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) | ||
ax.imshow(mask_image) | ||
|
||
|
||
def show_points(coords, labels, ax, marker_size=375): | ||
pos_points = coords[labels == 1] | ||
neg_points = coords[labels == 0] | ||
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', | ||
marker='*', s=marker_size, edgecolor='white', linewidth=1.25) | ||
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', | ||
marker='*', s=marker_size, edgecolor='white', linewidth=1.25) | ||
|
||
|
||
if __name__ == "__main__": | ||
encoder_model_path = "sam_hq_vit_l_encoder_quant.onnx" | ||
decoder_model_path = "sam_hq_vit_l_decoder.onnx" | ||
onnx_wrapper = ONNXInferenceWrapper(encoder_model_path, decoder_model_path) | ||
prompt = [{"type": "point", "data": [965, 351], "label": 1}] | ||
image_path = "bird1_000000002.png" | ||
result_masks = onnx_wrapper.infer(image_path, prompt) | ||
image = cv2.imread(image_path) | ||
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | ||
|
||
plt.figure(figsize=(10, 10)) | ||
plt.imshow(image) | ||
input_point = np.array([[965, 351]]) | ||
input_label = np.array([1]) | ||
|
||
show_points(input_point, input_label, plt.gca()) | ||
show_mask(result_masks, plt.gca()) | ||
plt.axis('off') | ||
plt.show() |