Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add digitize/bucketize #928

Merged
merged 12 commits into from
Apr 20, 2022
2 changes: 2 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,8 @@
- [#858](https://github.com/helmholtz-analytics/heat/pull/858) New Feature: `standard_normal`, `normal`
### Rounding
- [#827](https://github.com/helmholtz-analytics/heat/pull/827) New feature: `sign`, `sgn`
### Statistics
- [#928](https://github.com/helmholtz-analytics/heat/pull/928) New feature: `bucketize`, `digitize`

# v1.1.1
- [#864](https://github.com/helmholtz-analytics/heat/pull/864) Dependencies: constrain `torchvision` version range to match supported `pytorch` version range.
Expand Down
150 changes: 150 additions & 0 deletions heat/core/statistics.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,9 @@
"argmin",
"average",
"bincount",
"bucketize",
"cov",
"digitize",
"histc",
"histogram",
"kurtosis",
Expand Down Expand Up @@ -388,6 +390,79 @@ def bincount(x: DNDarray, weights: Optional[DNDarray] = None, minlength: int = 0
)


def bucketize(
input: DNDarray,
boundaries: Union[DNDarray, torch.Tensor],
out_int32: bool = False,
right: bool = False,
out: DNDarray = None,
) -> DNDarray:
"""
Returns the indices of the buckets to which each value in the input belongs, where the boundaries of the buckets are set by boundaries.

Parameters
----------
input : DNDarray
The input array.
boundaries : DNDarray or torch.Tensor
monotonically increasing sequence defining the bucket boundaries, 1-dimensional, not distributed
out_int32 : bool, optional
set the dtype of the output to ``ht.int64`` (`False`) or ``ht.int32`` (True)
right : bool, optional
indicate whether the buckets include the right (`False`) or left (`True`) boundaries, see Notes.
out : DNDarray, optional
The output array, must be the shame shape and split as the input array.

Notes
-----
This function uses the PyTorch's setting for ``right``:

===== ====================================
right returned index `i` satisfies
===== ====================================
False boundaries[i-1] < x <= boundaries[i]
True boundaries[i-1] <= x < boundaries[i]
===== ====================================

Raises
------
RuntimeError
If `boundaries` is distributed.

See Also
--------
digitize
NumPy-like version of this function.

Examples
--------
>>> boundaries = ht.array([1, 3, 5, 7, 9])
>>> v = ht.array([[3, 6, 9], [3, 6, 9]])
>>> ht.bucketize(v, boundaries)
DNDarray([[1, 3, 4],
[1, 3, 4]], dtype=ht.int64, device=cpu:0, split=None)
>>> ht.bucketize(v, boundaries, right=True)
DNDarray([[2, 3, 5],
[2, 3, 5]], dtype=ht.int64, device=cpu:0, split=None)
"""
if isinstance(boundaries, DNDarray):
if boundaries.is_distributed():
raise RuntimeError("'boundaries' must not be distributed.")
boundaries = boundaries.larray
else:
boundaries = torch.as_tensor(boundaries)

return _operations.__local_op(
torch.bucketize,
input,
out,
no_cast=True,
boundaries=boundaries,
out_int32=out_int32,
right=right,
)


def cov(
m: DNDarray,
y: Optional[DNDarray] = None,
Expand Down Expand Up @@ -463,6 +538,81 @@ def cov(
return c


def digitize(x: DNDarray, bins: Union[DNDarray, torch.Tensor], right: bool = False) -> DNDarray:
"""
Return the indices of the bins to which each value in the input array `x` belongs.
If values in `x` are beyond the bounds of bins, 0 or len(bins) is returned as appropriate.

Parameters
----------
x : DNDarray
The input array
bins : DNDarray or torch.Tensor
A 1-dimensional array containing a monotonic sequence describing the bin boundaries, not distributed.
right : bool, optional
Indicating whether the intervals include the right or the left bin edge, see Notes.

Notes
-----
This function uses NumPy's setting for ``right``:

===== ============= ============================
right order of bins returned index `i` satisfies
===== ============= ============================
False increasing bins[i-1] <= x < bins[i]
True increasing bins[i-1] < x <= bins[i]
False decreasing bins[i-1] > x >= bins[i]
True decreasing bins[i-1] >= x > bins[i]
===== ============= ============================

Raises
------
RuntimeError
If `bins` is distributed.

See Also
--------
bucketize
PyTorch-like version of this function.

Examples
--------
>>> x = ht.array([1.2, 10.0, 12.4, 15.5, 20.])
>>> bins = ht.array([0, 5, 10, 15, 20])
>>> ht.digitize(x,bins,right=True)
DNDarray([1, 2, 3, 4, 4], dtype=ht.int64, device=cpu:0, split=None)
>>> ht.digitize(x,bins,right=False)
DNDarray([1, 3, 3, 4, 5], dtype=ht.int64, device=cpu:0, split=None)
"""
if isinstance(bins, DNDarray):
if bins.is_distributed():
raise RuntimeError("'bins' must not be distributed.")
bins = bins.larray
else:
bins = torch.as_tensor(bins)

reverse = False

if bins[0] > bins[-1]:
bins = torch.flipud(bins)
reverse = True

result = _operations.__local_op(
torch.bucketize,
x,
out=None,
no_cast=True,
boundaries=bins,
out_int32=False,
right=not right,
)

if reverse:
result = bins.numel() - result

return result


def histc(
input: DNDarray, bins: int = 100, min: int = 0, max: int = 0, out: Optional[DNDarray] = None
) -> DNDarray:
Expand Down
72 changes: 72 additions & 0 deletions heat/core/tests/test_statistics.py
Original file line number Diff line number Diff line change
Expand Up @@ -361,6 +361,33 @@ def test_bincount(self):
with self.assertRaises(ValueError):
ht.bincount(ht.array([0, 1, 2, 3], split=0), weights=ht.array([1, 2, 3, 4]))

def test_bucketize(self):
boundaries = ht.array([1, 3, 5, 7, 9])
v = ht.array([[3, 6, 9], [3, 6, 9]])
a = ht.bucketize(v, boundaries)

self.assertTrue(ht.equal(a, ht.array([[1, 3, 4], [1, 3, 4]])))
self.assertTrue(a.dtype, ht.int64)
self.assertTrue(a.shape, v.shape)

a = ht.bucketize(v, boundaries, right=True)
self.assertTrue(ht.equal(a, ht.array([[2, 3, 5], [2, 3, 5]])))
self.assertEqual(a.dtype, ht.int64)
self.assertTrue(a.shape, v.shape)

boundaries, _ = torch.sort(torch.rand(5, device=self.device.torch_device))
v = torch.rand(6, device=self.device.torch_device)
t = torch.bucketize(v, boundaries, out_int32=True)

v = ht.array(v, split=0)
a = ht.bucketize(v, boundaries, out_int32=True)
self.assertTrue(ht.equal(ht.resplit(a, None), ht.asarray(t)))
self.assertEqual(a.dtype, ht.int32)

if ht.MPI_WORLD.size > 1:
with self.assertRaises(RuntimeError):
ht.bucketize(a, ht.array([0.0, 0.5, 1.0], split=0))

def test_cov(self):
x = ht.array([[0, 2], [1, 1], [2, 0]], dtype=ht.float, split=1).T
if x.comm.size < 3:
Expand Down Expand Up @@ -442,6 +469,51 @@ def test_cov(self):
with self.assertRaises(ValueError):
ht.cov(htdata, ddof=10000)

def test_digitize(self):
x = ht.array([1.2, 10.0, 12.4, 15.5, 20.0])
bins = ht.array([0, 5, 10, 15, 20])
a = ht.digitize(x, bins, right=True)
t = np.digitize(x.numpy(), bins.numpy(), right=True)

self.assertTrue((a.numpy() == t).all())
self.assertTrue(a.dtype, ht.int64)
self.assertTrue(a.shape, x.shape)

a = ht.digitize(x, bins, right=False)
t = np.digitize(x.numpy(), bins.numpy(), right=False)
self.assertTrue((a.numpy() == t).all())
self.assertEqual(a.dtype, ht.int64)
self.assertTrue(a.shape, x.shape)

bins = ht.flipud(bins)
a = ht.digitize(x, bins, right=True)
t = np.digitize(x.numpy(), bins.numpy(), right=True)
self.assertTrue((a.numpy() == t).all())
self.assertEqual(a.dtype, ht.int64)
self.assertTrue(a.shape, x.shape)

a = ht.digitize(x, bins, right=False)
t = np.digitize(x.numpy(), bins.numpy(), right=False)
self.assertTrue((a.numpy() == t).all())
self.assertEqual(a.dtype, ht.int64)
self.assertTrue(a.shape, x.shape)

y = ht.array([[1.2, 7.3, 10.0], [12.4, 15.5, 20.0]], split=0)
a = ht.digitize(y, bins, right=False)
self.assertTrue(ht.equal(a, ht.array([[4, 3, 2], [2, 1, 0]], split=0)))
self.assertEqual(a.dtype, ht.int64)
self.assertTrue(a.shape, y.shape)

y = ht.array([[1.2, 7.3, 10.0], [12.4, 15.5, 20.0]], split=1)
a = ht.digitize(y, bins, right=False)
self.assertTrue(ht.equal(a, ht.array([[4, 3, 2], [2, 1, 0]], split=1)))
self.assertEqual(a.dtype, ht.int64)
self.assertTrue(a.shape, x.shape)

if ht.MPI_WORLD.size > 1:
with self.assertRaises(RuntimeError):
ht.digitize(a, ht.array([0.0, 0.5, 1.0], split=0))

def test_histc(self):
# few entries and float64
c = torch.arange(4, dtype=torch.float64, device=self.device.torch_device)
Expand Down