Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

OCR: Add IAM corpus with unk decoding support #6

Merged
merged 1 commit into from
Nov 20, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 8 additions & 8 deletions egs/iam/s5/local/chain/run_cnn_1a.sh
Original file line number Diff line number Diff line change
@@ -1,10 +1,10 @@
#!/bin/bash

# steps/info/chain_dir_info.pl exp/chain/cnn_1a/
# exp/chain/cnn_1a/: num-iters=21 nj=2..4 num-params=4.4M dim=40->380 combine=-0.033->-0.025 xent:train/valid[13,20,final]=(-1.07,-1.31,-0.560/-1.30,-1.70,-0.978) logprob:train/valid[13,20,final]=(-0.064,-0.119,-0.011/-0.115,-0.208,-0.096)
# exp/chain/cnn_1a/: num-iters=21 nj=2..4 num-params=4.4M dim=40->364 combine=-0.021->-0.015 xent:train/valid[13,20,final]=(-1.05,-0.701,-0.591/-1.30,-1.08,-1.00) logprob:train/valid[13,20,final]=(-0.061,-0.034,-0.030/-0.107,-0.101,-0.098)

# head exp/chain/cnn_1a/decode_test/scoring_kaldi/best_wer
#%WER 18.34 [ 3231 / 17616, 348 ins, 693 del, 2190 sub ] exp/chain/cnn_1a/decode_test/wer_8_1.0
# WER 19.10 [ 3365 / 17616, 225 ins, 891 del, 2249 sub ] exp/chain/cnn_1a/decode_test/wer_10_0.5

set -e -o pipefail

Expand All @@ -29,8 +29,8 @@ alignment_subsampling_factor=1
chunk_width=340,300,200,100
Copy link
Owner

@hhadian hhadian Nov 19, 2017

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please update the results for this recipe if it's not already updated

num_leaves=500
# we don't need extra left/right context for TDNN systems.
chunk_left_context=32
chunk_right_context=32
chunk_left_context=0
chunk_right_context=0
tdnn_dim=450
# training options
srand=0
Expand Down Expand Up @@ -127,8 +127,8 @@ if [ $stage -le 4 ]; then

num_targets=$(tree-info $tree_dir/tree | grep num-pdfs | awk '{print $2}')
learning_rate_factor=$(echo "print 0.5/$xent_regularize" | python)
common1="required-time-offsets=0 height-offsets=-2,-1,0,1,2 num-filters-out=36"
common2="required-time-offsets=0 height-offsets=-2,-1,0,1,2 num-filters-out=70"
common1="height-offsets=-2,-1,0,1,2 num-filters-out=36"
common2="height-offsets=-2,-1,0,1,2 num-filters-out=70"
mkdir -p $dir/configs
cat <<EOF > $dir/configs/network.xconfig
input dim=40 name=input
Expand Down Expand Up @@ -223,8 +223,8 @@ if [ $stage -le 7 ]; then
steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \
--extra-left-context $chunk_left_context \
--extra-right-context $chunk_right_context \
--extra-left-context-initial 32 \
--extra-right-context-final 32 \
--extra-left-context-initial 0 \
--extra-right-context-final 0 \
--frames-per-chunk $frames_per_chunk \
--nj $nj --cmd "$decode_cmd" \
$dir/graph data/test $dir/decode_test || exit 1;
Expand Down
30 changes: 19 additions & 11 deletions egs/iam/s5/local/chain/run_cnn_chainali_1a.sh
Original file line number Diff line number Diff line change
@@ -1,13 +1,21 @@
#!/bin/bash

# chainali_1a uses chain model for lattice instead of gmm-hmm model. It has more cnn layers as compared to 1a
# (18.34% -> 13.68%)
# chainali_1a is as 1a except it uses chain alignments (using 1a system) instead of gmm alignments

# ./local/chain/compare_wer.sh exp/chain/cnn_chainali_1a/ exp/chain/cnn_1a/
# System cnn_chainali_1a cnn_1a
# WER 15.85 19.10
# Final train prob -0.0128 -0.0297
# Final valid prob -0.0447 -0.0975
# Final train prob (xent) -0.6448 -0.5915
# Final valid prob (xent) -0.9924 -1.0022

# steps/info/chain_dir_info.pl exp/chain/cnn1a_chainali/
# exp/chain/cnn_chainali_1a/: num-iters=21 nj=2..4 num-params=3.8M dim=40->380 combine=-0.009->-0.006 xent:train/valid[13,20,final]=(-0.870,-0.593,-0.568/-1.08,-0.889,-0.874) logprob:train/valid[13,20,final]=(-0.035,-0.003,-0.001/-0.077,-0.055,-0.054)
# exp/chain/cnn_chainali_1a/: num-iters=21 nj=2..4 num-params=4.4M dim=40->364 combine=-0.002->0.000 xent:train/valid[13,20,final]=(-0.929,-0.711,-0.645/-1.16,-1.04,-0.992) logprob:train/valid[13,20,final]=(-0.029,-0.016,-0.013/-0.051,-0.047,-0.045)

# head exp/chain/cnn_chainali_1a/decode_test/scoring_kaldi/best_wer
# %WER 13.68 [ 2410 / 17616, 243 ins, 633 del, 1534 sub ] exp/chain/cnn_chainali_1a/decode_test/wer_8_1.0
# %WER 15.85 [ 2793 / 17616, 235 ins, 557 del, 2001 sub ] exp/chain/cnn_chainali_1a/decode_test/wer_9_0.0
# %WER 7.76 [ 5114 / 65921, 834 ins, 1355 del, 2925 sub ] exp/chain/cnn_chainali_1a/decode_test/cer_9_0.5

set -e -o pipefail

Expand All @@ -33,8 +41,8 @@ alignment_subsampling_factor=1
chunk_width=340,300,200,100
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Also for this recipe.
Change the description to "chainali_1a is as 1a except it uses chain alignments (using 1a system) instead of gmm alignments" and then append the output (and the command itself) of compare_wer.sh for 1a and chainali_1a (after 1 blank line)

num_leaves=500
# we don't need extra left/right context for TDNN systems.
chunk_left_context=32
chunk_right_context=32
chunk_left_context=0
chunk_right_context=0
tdnn_dim=450
# training options
srand=0
Expand Down Expand Up @@ -131,9 +139,9 @@ if [ $stage -le 4 ]; then

num_targets=$(tree-info $tree_dir/tree | grep num-pdfs | awk '{print $2}')
learning_rate_factor=$(echo "print 0.5/$xent_regularize" | python)
common1="required-time-offsets=0 height-offsets=-2,-1,0,1,2 num-filters-out=36"
common2="required-time-offsets=0 height-offsets=-2,-1,0,1,2 num-filters-out=70"
common3="required-time-offsets=0 height-offsets=-1,0,1 num-filters-out=70"
common1="height-offsets=-2,-1,0,1,2 num-filters-out=36"
common2="height-offsets=-2,-1,0,1,2 num-filters-out=70"
common3="height-offsets=-1,0,1 num-filters-out=70"
mkdir -p $dir/configs
cat <<EOF > $dir/configs/network.xconfig
input dim=40 name=input
Expand Down Expand Up @@ -228,8 +236,8 @@ if [ $stage -le 7 ]; then
steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \
--extra-left-context $chunk_left_context \
--extra-right-context $chunk_right_context \
--extra-left-context-initial 32 \
--extra-right-context-final 32 \
--extra-left-context-initial 0 \
--extra-right-context-final 0 \
--frames-per-chunk $frames_per_chunk \
--nj $nj --cmd "$decode_cmd" \
$dir/graph data/test $dir/decode_test || exit 1;
Expand Down
244 changes: 244 additions & 0 deletions egs/iam/s5/local/chain/run_cnn_chainali_1b.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,244 @@
#!/bin/bash

# chainali_1b is as chainali_1a except it has 3 more cnn layers and 1 less tdnn layer.
# ./local/chain/compare_wer.sh exp/chain/cnn_chainali_1a/ exp/chain/cnn_chainali_1b/
# System cnn_chainali_1a cnn_chainali_1b
# WER 15.85 14.51
# Final train prob -0.0128 -0.0112
# Final valid prob -0.0447 -0.0375
# Final train prob (xent) -0.6448 -0.6230
# Final valid prob (xent) -0.9924 -0.9399

# steps/info/chain_dir_info.pl exp/chain/chainali_cnn_1b/
# exp/chain/chainali_cnn_1b/: num-iters=21 nj=2..4 num-params=4.0M dim=40->364 combine=-0.009->-0.005 xent:train/valid[13,20,final]=(-1.47,-0.728,-0.623/-1.69,-1.02,-0.940) logprob:train/valid[13,20,final]=(-0.068,-0.030,-0.011/-0.086,-0.056,-0.038)

# %WER 14.51 [ 2556 / 17616, 210 ins, 573 del, 1773 sub ] exp/chain/cnn_chainali_1b/decode_test/wer_10_0.0
# %WER 7.02 [ 4629 / 65921, 742 ins, 1282 del, 2605 sub ] exp/chain/cnn_chainali_1b/decode_test/cer_9_0.0

set -e -o pipefail

stage=0

nj=30
train_set=train
gmm=tri3 # this is the source gmm-dir that we'll use for alignments; it
# should have alignments for the specified training data.
nnet3_affix= # affix for exp dirs, e.g. it was _cleaned in tedlium.
affix=_1b #affix for TDNN+LSTM directory e.g. "1a" or "1b", in case we change the configuration.
ali=tri3_ali
chain_model_dir=exp/chain${nnet3_affix}/cnn${affix}
common_egs_dir=
reporting_email=

# chain options
train_stage=-10
xent_regularize=0.1
frame_subsampling_factor=4
alignment_subsampling_factor=1
# training chunk-options
chunk_width=340,300,200,100
num_leaves=500
# we don't need extra left/right context for TDNN systems.
chunk_left_context=0
chunk_right_context=0
tdnn_dim=450
# training options
srand=0
remove_egs=false
lang_test=lang_test
# End configuration section.
echo "$0 $@" # Print the command line for logging


. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh


if ! cuda-compiled; then
cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed.
EOF
fi

gmm_dir=exp/${gmm}
ali_dir=exp/${ali}
lat_dir=exp/chain${nnet3_affix}/${gmm}_${train_set}_lats_chain
gmm_lat_dir=exp/chain${nnet3_affix}/${gmm}_${train_set}_lats
dir=exp/chain${nnet3_affix}/cnn_chainali${affix}
train_data_dir=data/${train_set}
lores_train_data_dir=$train_data_dir # for the start, use the same data for gmm and chain
tree_dir=exp/chain${nnet3_affix}/tree_chain

# the 'lang' directory is created by this script.
# If you create such a directory with a non-standard topology
# you should probably name it differently.
lang=data/lang_chain
for f in $train_data_dir/feats.scp \
$lores_train_data_dir/feats.scp $gmm_dir/final.mdl \
$ali_dir/ali.1.gz $gmm_dir/final.mdl; do
[ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1
done


if [ $stage -le 1 ]; then
echo "$0: creating lang directory $lang with chain-type topology"
# Create a version of the lang/ directory that has one state per phone in the
# topo file. [note, it really has two states.. the first one is only repeated
# once, the second one has zero or more repeats.]
if [ -d $lang ]; then
if [ $lang/L.fst -nt data/$lang_test/L.fst ]; then
echo "$0: $lang already exists, not overwriting it; continuing"
else
echo "$0: $lang already exists and seems to be older than data/lang..."
echo " ... not sure what to do. Exiting."
exit 1;
fi
else
cp -r data/$lang_test $lang
silphonelist=$(cat $lang/phones/silence.csl) || exit 1;
nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1;
# Use our special topology... note that later on may have to tune this
# topology.
steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo
fi
fi

if [ $stage -le 2 ]; then
# Get the alignments as lattices (gives the chain training more freedom).
# use the same num-jobs as the alignments
local/chain/align_nnet3_lats.sh --nj $nj --cmd "$train_cmd" ${lores_train_data_dir} \
data/$lang_test $chain_model_dir $lat_dir
cp $gmm_lat_dir/splice_opts $lat_dir/splice_opts
fi

if [ $stage -le 3 ]; then
# Build a tree using our new topology. We know we have alignments for the
# speed-perturbed data (local/nnet3/run_ivector_common.sh made them), so use
# those. The num-leaves is always somewhat less than the num-leaves from
# the GMM baseline.
if [ -f $tree_dir/final.mdl ]; then
echo "$0: $tree_dir/final.mdl already exists, refusing to overwrite it."
exit 1;
fi
steps/nnet3/chain/build_tree.sh \
--frame-subsampling-factor $frame_subsampling_factor \
--context-opts "--context-width=2 --central-position=1" \
--cmd "$train_cmd" $num_leaves ${lores_train_data_dir} \
$lang $ali_dir $tree_dir
fi


if [ $stage -le 4 ]; then
mkdir -p $dir
echo "$0: creating neural net configs using the xconfig parser";

num_targets=$(tree-info $tree_dir/tree | grep num-pdfs | awk '{print $2}')
learning_rate_factor=$(echo "print 0.5/$xent_regularize" | python)
common1="required-time-offsets= height-offsets=-2,-1,0,1,2 num-filters-out=36"
common2="required-time-offsets= height-offsets=-2,-1,0,1,2 num-filters-out=70"
common3="required-time-offsets= height-offsets=-1,0,1 num-filters-out=70"
mkdir -p $dir/configs
cat <<EOF > $dir/configs/network.xconfig
input dim=40 name=input
conv-relu-batchnorm-layer name=cnn1 height-in=40 height-out=40 time-offsets=-3,-2,-1,0,1,2,3 $common1
conv-relu-batchnorm-layer name=cnn2 height-in=40 height-out=20 time-offsets=-2,-1,0,1,2 $common1 height-subsample-out=2
conv-relu-batchnorm-layer name=cnn3 height-in=20 height-out=20 time-offsets=-4,-2,0,2,4 $common2
conv-relu-batchnorm-layer name=cnn4 height-in=20 height-out=20 time-offsets=-4,-2,0,2,4 $common2
conv-relu-batchnorm-layer name=cnn5 height-in=20 height-out=10 time-offsets=-4,-2,0,2,4 $common2 height-subsample-out=2
conv-relu-batchnorm-layer name=cnn6 height-in=10 height-out=10 time-offsets=-1,0,1 $common3
conv-relu-batchnorm-layer name=cnn7 height-in=10 height-out=10 time-offsets=-1,0,1 $common3
relu-batchnorm-layer name=tdnn1 input=Append(-4,-2,0,2,4) dim=$tdnn_dim
relu-batchnorm-layer name=tdnn2 input=Append(-4,0,4) dim=$tdnn_dim
relu-batchnorm-layer name=tdnn3 input=Append(-4,0,4) dim=$tdnn_dim
## adding the layers for chain branch
relu-batchnorm-layer name=prefinal-chain dim=$tdnn_dim target-rms=0.5
output-layer name=output include-log-softmax=false dim=$num_targets max-change=1.5
# adding the layers for xent branch
# This block prints the configs for a separate output that will be
# trained with a cross-entropy objective in the 'chain' mod?els... this
# has the effect of regularizing the hidden parts of the model. we use
# 0.5 / args.xent_regularize as the learning rate factor- the factor of
# 0.5 / args.xent_regularize is suitable as it means the xent
# final-layer learns at a rate independent of the regularization
# constant; and the 0.5 was tuned so as to make the relative progress
# similar in the xent and regular final layers.
relu-batchnorm-layer name=prefinal-xent input=tdnn3 dim=$tdnn_dim target-rms=0.5
output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor max-change=1.5
EOF
steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
fi


if [ $stage -le 5 ]; then
if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
utils/create_split_dir.pl \
/export/b0{3,4,5,6}/$USER/kaldi-data/egs/iam-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage
fi

steps/nnet3/chain/train.py --stage=$train_stage \
--cmd="$decode_cmd" \
--feat.cmvn-opts="--norm-means=false --norm-vars=false" \
--chain.xent-regularize $xent_regularize \
--chain.leaky-hmm-coefficient=0.1 \
--chain.l2-regularize=0.00005 \
--chain.apply-deriv-weights=false \
--chain.lm-opts="--num-extra-lm-states=500" \
--chain.frame-subsampling-factor=$frame_subsampling_factor \
--chain.alignment-subsampling-factor=$alignment_subsampling_factor \
--trainer.srand=$srand \
--trainer.max-param-change=2.0 \
--trainer.num-epochs=4 \
--trainer.frames-per-iter=1000000 \
--trainer.optimization.num-jobs-initial=2 \
--trainer.optimization.num-jobs-final=4 \
--trainer.optimization.initial-effective-lrate=0.001 \
--trainer.optimization.final-effective-lrate=0.0001 \
--trainer.optimization.shrink-value=1.0 \
--trainer.num-chunk-per-minibatch=64,32 \
--trainer.optimization.momentum=0.0 \
--egs.chunk-width=$chunk_width \
--egs.chunk-left-context=$chunk_left_context \
--egs.chunk-right-context=$chunk_right_context \
--egs.chunk-left-context-initial=0 \
--egs.chunk-right-context-final=0 \
--egs.dir="$common_egs_dir" \
--egs.opts="--frames-overlap-per-eg 0" \
--cleanup.remove-egs=$remove_egs \
--use-gpu=true \
--reporting.email="$reporting_email" \
--feat-dir=$train_data_dir \
--tree-dir=$tree_dir \
--lat-dir=$lat_dir \
--dir=$dir || exit 1;
fi

if [ $stage -le 6 ]; then
# The reason we are using data/lang here, instead of $lang, is just to
# emphasize that it's not actually important to give mkgraph.sh the
# lang directory with the matched topology (since it gets the
# topology file from the model). So you could give it a different
# lang directory, one that contained a wordlist and LM of your choice,
# as long as phones.txt was compatible.

utils/mkgraph.sh \
--self-loop-scale 1.0 data/$lang_test \
$dir $dir/graph || exit 1;
fi

if [ $stage -le 7 ]; then
frames_per_chunk=$(echo $chunk_width | cut -d, -f1)
steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \
--extra-left-context $chunk_left_context \
--extra-right-context $chunk_right_context \
--extra-left-context-initial 0 \
--extra-right-context-final 0 \
--frames-per-chunk $frames_per_chunk \
--nj $nj --cmd "$decode_cmd" \
$dir/graph data/test $dir/decode_test || exit 1;
fi