Skip to content

Commit

Permalink
feat: Port Datafusion Covariance to Comet (apache#234)
Browse files Browse the repository at this point in the history
* feat: Port Datafusion Covariance to Comet

* feat: Port Datafusion Covariance to Comet

* fmt

* update EXPRESSIONS.md

* combine COVAR_SAMP and COVAR_POP

* fix fmt

* address comment

---------

Co-authored-by: Huaxin Gao <huaxin.gao@apple.com>
Co-authored-by: Liang-Chi Hsieh <viirya@gmail.com>
  • Loading branch information
3 people authored and Steve Vaughan Jr committed Apr 18, 2024
1 parent b1d8575 commit 27808ac
Show file tree
Hide file tree
Showing 8 changed files with 462 additions and 1 deletion.
3 changes: 3 additions & 0 deletions EXPRESSIONS.md
Original file line number Diff line number Diff line change
Expand Up @@ -101,3 +101,6 @@ The following Spark expressions are currently available:
+ BitAnd
+ BitOr
+ BitXor
+ BoolAnd
+ BoolOr
+ Covariance
311 changes: 311 additions & 0 deletions core/src/execution/datafusion/expressions/covariance.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,311 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

use std::{any::Any, sync::Arc};

use crate::execution::datafusion::expressions::stats::StatsType;
use arrow::{
array::{ArrayRef, Float64Array},
compute::cast,
datatypes::{DataType, Field},
};
use datafusion::logical_expr::Accumulator;
use datafusion_common::{
downcast_value, unwrap_or_internal_err, DataFusionError, Result, ScalarValue,
};
use datafusion_physical_expr::{
aggregate::utils::down_cast_any_ref, expressions::format_state_name, AggregateExpr,
PhysicalExpr,
};

/// COVAR_SAMP and COVAR_POP aggregate expression
/// The implementation mostly is the same as the DataFusion's implementation. The reason
/// we have our own implementation is that DataFusion has UInt64 for state_field count,
/// while Spark has Double for count.
#[derive(Debug, Clone)]
pub struct Covariance {
name: String,
expr1: Arc<dyn PhysicalExpr>,
expr2: Arc<dyn PhysicalExpr>,
stats_type: StatsType,
}

impl Covariance {
/// Create a new COVAR aggregate function
pub fn new(
expr1: Arc<dyn PhysicalExpr>,
expr2: Arc<dyn PhysicalExpr>,
name: impl Into<String>,
data_type: DataType,
stats_type: StatsType,
) -> Self {
// the result of covariance just support FLOAT64 data type.
assert!(matches!(data_type, DataType::Float64));
Self {
name: name.into(),
expr1,
expr2,
stats_type,
}
}
}

impl AggregateExpr for Covariance {
/// Return a reference to Any that can be used for downcasting
fn as_any(&self) -> &dyn Any {
self
}

fn field(&self) -> Result<Field> {
Ok(Field::new(&self.name, DataType::Float64, true))
}

fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> {
Ok(Box::new(CovarianceAccumulator::try_new(self.stats_type)?))
}

fn state_fields(&self) -> Result<Vec<Field>> {
Ok(vec![
Field::new(
format_state_name(&self.name, "count"),
DataType::Float64,
true,
),
Field::new(
format_state_name(&self.name, "mean1"),
DataType::Float64,
true,
),
Field::new(
format_state_name(&self.name, "mean2"),
DataType::Float64,
true,
),
Field::new(
format_state_name(&self.name, "algo_const"),
DataType::Float64,
true,
),
])
}

fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
vec![self.expr1.clone(), self.expr2.clone()]
}

fn name(&self) -> &str {
&self.name
}
}

impl PartialEq<dyn Any> for Covariance {
fn eq(&self, other: &dyn Any) -> bool {
down_cast_any_ref(other)
.downcast_ref::<Self>()
.map(|x| {
self.name == x.name
&& self.expr1.eq(&x.expr1)
&& self.expr2.eq(&x.expr2)
&& self.stats_type == x.stats_type
})
.unwrap_or(false)
}
}

/// An accumulator to compute covariance
#[derive(Debug)]
pub struct CovarianceAccumulator {
algo_const: f64,
mean1: f64,
mean2: f64,
count: f64,
stats_type: StatsType,
}

impl CovarianceAccumulator {
/// Creates a new `CovarianceAccumulator`
pub fn try_new(s_type: StatsType) -> Result<Self> {
Ok(Self {
algo_const: 0_f64,
mean1: 0_f64,
mean2: 0_f64,
count: 0_f64,
stats_type: s_type,
})
}

pub fn get_count(&self) -> f64 {
self.count
}

pub fn get_mean1(&self) -> f64 {
self.mean1
}

pub fn get_mean2(&self) -> f64 {
self.mean2
}

pub fn get_algo_const(&self) -> f64 {
self.algo_const
}
}

impl Accumulator for CovarianceAccumulator {
fn state(&mut self) -> Result<Vec<ScalarValue>> {
Ok(vec![
ScalarValue::from(self.count),
ScalarValue::from(self.mean1),
ScalarValue::from(self.mean2),
ScalarValue::from(self.algo_const),
])
}

fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
let values1 = &cast(&values[0], &DataType::Float64)?;
let values2 = &cast(&values[1], &DataType::Float64)?;

let mut arr1 = downcast_value!(values1, Float64Array).iter().flatten();
let mut arr2 = downcast_value!(values2, Float64Array).iter().flatten();

for i in 0..values1.len() {
let value1 = if values1.is_valid(i) {
arr1.next()
} else {
None
};
let value2 = if values2.is_valid(i) {
arr2.next()
} else {
None
};

if value1.is_none() || value2.is_none() {
continue;
}

let value1 = unwrap_or_internal_err!(value1);
let value2 = unwrap_or_internal_err!(value2);
let new_count = self.count + 1.0;
let delta1 = value1 - self.mean1;
let new_mean1 = delta1 / new_count + self.mean1;
let delta2 = value2 - self.mean2;
let new_mean2 = delta2 / new_count + self.mean2;
let new_c = delta1 * (value2 - new_mean2) + self.algo_const;

self.count += 1.0;
self.mean1 = new_mean1;
self.mean2 = new_mean2;
self.algo_const = new_c;
}

Ok(())
}

fn retract_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
let values1 = &cast(&values[0], &DataType::Float64)?;
let values2 = &cast(&values[1], &DataType::Float64)?;
let mut arr1 = downcast_value!(values1, Float64Array).iter().flatten();
let mut arr2 = downcast_value!(values2, Float64Array).iter().flatten();

for i in 0..values1.len() {
let value1 = if values1.is_valid(i) {
arr1.next()
} else {
None
};
let value2 = if values2.is_valid(i) {
arr2.next()
} else {
None
};

if value1.is_none() || value2.is_none() {
continue;
}

let value1 = unwrap_or_internal_err!(value1);
let value2 = unwrap_or_internal_err!(value2);

let new_count = self.count - 1.0;
let delta1 = self.mean1 - value1;
let new_mean1 = delta1 / new_count + self.mean1;
let delta2 = self.mean2 - value2;
let new_mean2 = delta2 / new_count + self.mean2;
let new_c = self.algo_const - delta1 * (new_mean2 - value2);

self.count -= 1.0;
self.mean1 = new_mean1;
self.mean2 = new_mean2;
self.algo_const = new_c;
}

Ok(())
}

fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
let counts = downcast_value!(states[0], Float64Array);
let means1 = downcast_value!(states[1], Float64Array);
let means2 = downcast_value!(states[2], Float64Array);
let cs = downcast_value!(states[3], Float64Array);

for i in 0..counts.len() {
let c = counts.value(i);
if c == 0.0 {
continue;
}
let new_count = self.count + c;
let new_mean1 = self.mean1 * self.count / new_count + means1.value(i) * c / new_count;
let new_mean2 = self.mean2 * self.count / new_count + means2.value(i) * c / new_count;
let delta1 = self.mean1 - means1.value(i);
let delta2 = self.mean2 - means2.value(i);
let new_c =
self.algo_const + cs.value(i) + delta1 * delta2 * self.count * c / new_count;

self.count = new_count;
self.mean1 = new_mean1;
self.mean2 = new_mean2;
self.algo_const = new_c;
}
Ok(())
}

fn evaluate(&mut self) -> Result<ScalarValue> {
let count = match self.stats_type {
StatsType::Population => self.count,
StatsType::Sample => {
if self.count > 0.0 {
self.count - 1.0
} else {
self.count
}
}
};

if count == 0.0 {
Ok(ScalarValue::Float64(None))
} else {
Ok(ScalarValue::Float64(Some(self.algo_const / count)))
}
}

fn size(&self) -> usize {
std::mem::size_of_val(self)
}
}
2 changes: 2 additions & 0 deletions core/src/execution/datafusion/expressions/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,8 @@ pub use normalize_nan::NormalizeNaNAndZero;
pub mod avg;
pub mod avg_decimal;
pub mod bloom_filter_might_contain;
pub mod covariance;
pub mod stats;
pub mod strings;
pub mod subquery;
pub mod sum_decimal;
Expand Down
27 changes: 27 additions & 0 deletions core/src/execution/datafusion/expressions/stats.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/// Enum used for differentiating population and sample for statistical functions
#[derive(PartialEq, Eq, Debug, Clone, Copy)]
pub enum StatsType {
/// Population
Population,
/// Sample
Sample,
}
26 changes: 26 additions & 0 deletions core/src/execution/datafusion/planner.rs
Original file line number Diff line number Diff line change
Expand Up @@ -67,8 +67,10 @@ use crate::{
bloom_filter_might_contain::BloomFilterMightContain,
cast::Cast,
checkoverflow::CheckOverflow,
covariance::Covariance,
if_expr::IfExpr,
scalar_funcs::create_comet_physical_fun,
stats::StatsType,
strings::{Contains, EndsWith, Like, StartsWith, StringSpaceExec, SubstringExec},
subquery::Subquery,
sum_decimal::SumDecimal,
Expand Down Expand Up @@ -1193,6 +1195,30 @@ impl PhysicalPlanner {
let datatype = to_arrow_datatype(expr.datatype.as_ref().unwrap());
Ok(Arc::new(BitXor::new(child, "bit_xor", datatype)))
}
AggExprStruct::CovSample(expr) => {
let child1 = self.create_expr(expr.child1.as_ref().unwrap(), schema.clone())?;
let child2 = self.create_expr(expr.child2.as_ref().unwrap(), schema.clone())?;
let datatype = to_arrow_datatype(expr.datatype.as_ref().unwrap());
Ok(Arc::new(Covariance::new(
child1,
child2,
"covariance",
datatype,
StatsType::Sample,
)))
}
AggExprStruct::CovPopulation(expr) => {
let child1 = self.create_expr(expr.child1.as_ref().unwrap(), schema.clone())?;
let child2 = self.create_expr(expr.child2.as_ref().unwrap(), schema.clone())?;
let datatype = to_arrow_datatype(expr.datatype.as_ref().unwrap());
Ok(Arc::new(Covariance::new(
child1,
child2,
"covariance_pop",
datatype,
StatsType::Population,
)))
}
}
}

Expand Down
Loading

0 comments on commit 27808ac

Please sign in to comment.