Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix memory explosion when auto-calculating canvas range extents with dask #717

Merged
merged 1 commit into from
Feb 23, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 7 additions & 2 deletions datashader/dask.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,8 +31,13 @@ def dask_pipeline(df, schema, canvas, glyph, summary):


def shape_bounds_st_and_axis(df, canvas, glyph):
x_range = canvas.x_range or glyph.compute_x_bounds_dask(df)
y_range = canvas.y_range or glyph.compute_y_bounds_dask(df)
if not canvas.x_range or not canvas.y_range:
x_extents, y_extents = glyph.compute_bounds_dask(df)
else:
x_extents, y_extents = None, None

x_range = canvas.x_range or x_extents
y_range = canvas.y_range or y_extents
x_min, x_max, y_min, y_max = bounds = compute(*(x_range + y_range))
x_range, y_range = (x_min, x_max), (y_min, y_max)

Expand Down
109 changes: 60 additions & 49 deletions datashader/glyphs.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,23 +84,20 @@ def maybe_expand_bounds(bounds):
return minval, maxval

@memoize
def compute_x_bounds_dask(self, df):
"""Like ``PointLike._compute_x_bounds``, but memoized because
``df`` is immutable/hashable (a Dask dataframe).
"""
xs = df[self.x].values
minval, maxval = np.nanmin(xs), np.nanmax(xs)
return self.maybe_expand_bounds((minval, maxval))
def compute_bounds_dask(self, ddf):

@memoize
def compute_y_bounds_dask(self, df):
"""Like ``PointLike._compute_y_bounds``, but memoized because
``df`` is immutable/hashable (a Dask dataframe).
"""
ys = df[self.y].values
minval, maxval = np.nanmin(ys), np.nanmax(ys)
return self.maybe_expand_bounds((minval, maxval))
r = ddf.map_partitions(lambda df: np.array([[
np.nanmin(df[self.x].values),
np.nanmax(df[self.x].values),
np.nanmin(df[self.y].values),
np.nanmax(df[self.y].values)]]
)).compute()

x_extents = np.nanmin(r[:, 0]), np.nanmax(r[:, 1])
y_extents = np.nanmin(r[:, 2]), np.nanmax(r[:, 3])

return (self.maybe_expand_bounds(x_extents),
self.maybe_expand_bounds(y_extents))


class _PolygonLike(_PointLike):
Expand Down Expand Up @@ -255,18 +252,20 @@ def compute_y_bounds(self, df):
return self.maybe_expand_bounds((min(mins), max(maxes)))

@memoize
def compute_x_bounds_dask(self, df):
bounds_list = [self._compute_x_bounds(df[x].values.compute())
for x in self.x]
mins, maxes = zip(*bounds_list)
return self.maybe_expand_bounds((min(mins), max(maxes)))
def compute_bounds_dask(self, ddf):

@memoize
def compute_y_bounds_dask(self, df):
bounds_list = [self._compute_y_bounds(df[y].values.compute())
for y in self.y]
mins, maxes = zip(*bounds_list)
return self.maybe_expand_bounds((min(mins), max(maxes)))
r = ddf.map_partitions(lambda df: np.array([[
np.nanmin([np.nanmin(df[c].values) for c in self.x]),
np.nanmax([np.nanmax(df[c].values) for c in self.x]),
np.nanmin([np.nanmin(df[c].values) for c in self.y]),
np.nanmax([np.nanmax(df[c].values) for c in self.y])]]
)).compute()

x_extents = np.nanmin(r[:, 0]), np.nanmax(r[:, 1])
y_extents = np.nanmin(r[:, 2]), np.nanmax(r[:, 3])

return (self.maybe_expand_bounds(x_extents),
self.maybe_expand_bounds(y_extents))

@memoize
def _build_extend(self, x_mapper, y_mapper, info, append):
Expand Down Expand Up @@ -344,28 +343,20 @@ def compute_y_bounds(self, df):
return self.maybe_expand_bounds((min(mins), max(maxes)))

@memoize
def compute_x_bounds_dask(self, df):
"""Like ``PointLike.compute_x_bounds``, but memoized because
``df`` is immutable/hashable (a Dask dataframe).
"""
x_mins = [np.nanmin(df[xlabel].values) for xlabel in self.x]
x_maxes = [np.nanmax(df[xlabel].values) for xlabel in self.x]
def compute_bounds_dask(self, ddf):

minval, maxval = np.nanmin(x_mins), np.nanmax(x_maxes)
r = ddf.map_partitions(lambda df: np.array([[
np.nanmin([np.nanmin(df[c].values) for c in self.x]),
np.nanmax([np.nanmax(df[c].values) for c in self.x]),
np.nanmin([np.nanmin(df[c].values) for c in self.y]),
np.nanmax([np.nanmax(df[c].values) for c in self.y])]]
)).compute()

return self.maybe_expand_bounds((minval, maxval))
x_extents = np.nanmin(r[:, 0]), np.nanmax(r[:, 1])
y_extents = np.nanmin(r[:, 2]), np.nanmax(r[:, 3])

@memoize
def compute_y_bounds_dask(self, df):
"""Like ``PointLike.compute_x_bounds``, but memoized because
``df`` is immutable/hashable (a Dask dataframe).
"""
y_mins = [np.nanmin(df[ylabel].values) for ylabel in self.y]
y_maxes = [np.nanmax(df[ylabel].values) for ylabel in self.y]

minval, maxval = np.nanmin(y_mins), np.nanmax(y_maxes)

return self.maybe_expand_bounds((minval, maxval))
return (self.maybe_expand_bounds(x_extents),
self.maybe_expand_bounds(y_extents))

@memoize
def _build_extend(self, x_mapper, y_mapper, info, append):
Expand Down Expand Up @@ -406,8 +397,18 @@ def compute_x_bounds(self, *args):
x_max = np.nanmax(self.x)
return self.maybe_expand_bounds((x_min, x_max))

def compute_x_bounds_dask(self, df):
return self.compute_x_bounds()
@memoize
def compute_bounds_dask(self, ddf):

r = ddf.map_partitions(lambda df: np.array([[
np.nanmin([np.nanmin(df[c].values) for c in self.y]),
np.nanmax([np.nanmax(df[c].values) for c in self.y])]]
)).compute()

y_extents = np.nanmin(r[:, 0]), np.nanmax(r[:, 1])

return (self.compute_x_bounds(),
self.maybe_expand_bounds(y_extents))

@memoize
def _build_extend(self, x_mapper, y_mapper, info, append):
Expand Down Expand Up @@ -448,8 +449,18 @@ def compute_y_bounds(self, *args):
y_max = np.nanmax(self.y)
return self.maybe_expand_bounds((y_min, y_max))

def compute_y_bounds_dask(self, df):
return self.compute_y_bounds()
@memoize
def compute_bounds_dask(self, ddf):

r = ddf.map_partitions(lambda df: np.array([[
np.nanmin([np.nanmin(df[c].values) for c in self.x]),
np.nanmax([np.nanmax(df[c].values) for c in self.x])]]
)).compute()

x_extents = np.nanmin(r[:, 0]), np.nanmax(r[:, 1])

return (self.maybe_expand_bounds(x_extents),
self.compute_y_bounds())

@memoize
def _build_extend(self, x_mapper, y_mapper, info, append):
Expand Down
37 changes: 37 additions & 0 deletions datashader/tests/test_dask.py
Original file line number Diff line number Diff line change
Expand Up @@ -420,6 +420,43 @@ def test_line_autorange(df, x, y, ax):
assert_eq(agg, out)


def test_line_x_constant_autorange():
# axis1 y constant
df = pd.DataFrame({
'y0': [0, 0, 0],
'y1': [-4, 0, 4],
'y2': [0, 0, 0],
})

x = np.array([-4, 0, 4])
y = ['y0', 'y1', 'y2']
ax = 1

axis = ds.core.LinearAxis()
lincoords = axis.compute_index(
axis.compute_scale_and_translate((-4., 4.), 9), 9)

ddf = dd.from_pandas(df, npartitions=2)

cvs = ds.Canvas(plot_width=9, plot_height=9)

agg = cvs.line(ddf, x, y, ds.count(), axis=ax)

sol = np.array([[0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 1, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 1, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 1, 0],
[3, 1, 1, 1, 1, 1, 1, 1, 3],
[0, 1, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 1, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 1, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0]], dtype='i4')

out = xr.DataArray(sol, coords=[lincoords, lincoords],
dims=['y', 'x'])
assert_eq(agg, out)


def test_log_axis_line():
axis = ds.core.LogAxis()
logcoords = axis.compute_index(axis.compute_scale_and_translate((1, 10), 2), 2)
Expand Down