Skip to content
/ reapr Public

šŸ•øā†’ā„¹ļø Reap Information from Websites

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

hrbrmstr/reapr

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Ā 

History

7 Commits
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 

Repository files navigation

Travis-CI Build Status Coverage Status CRAN_Status_Badge

reapr

Reap Information from Websites

Description

Thereā€™s no longer need to fear getting at the gnarly bits of web pages. For the vast majority of web scraping tasks, the ā€˜rvestā€™ package does a phenomenal job providing just enough of what you need to get by. But, if you want more of the details of the site youā€™re scraping, some handy shortcuts to page elements in use and the ability to not have to think too hard about serialization during scraping tasks, then you may be interested in reaping more than harvesting. Tools are provided to interact with web sites content and metadata more granular level than ā€˜rvestā€™ but at a higher level than ā€˜httrā€™/ā€˜curlā€™.

NOTE

This is very much a WIP but there are enough basic features to let others kick the tyres and see whatā€™s woefully busted or in need of attention.

Whatā€™s Inside The Tin

The following functions are implemented:

  • reap_url: Read HTML content from a URL
  • mill: Turn a ā€˜reapr_docā€™ into plain text without cruft
  • reapr: Reap Information from Websites
  • reap_attr: Reap text, names and attributes from HTML
  • reap_attrs: Reap text, names and attributes from HTML
  • reap_children: Reap text, names and attributes from HTML
  • reap_name: Reap text, names and attributes from HTML
  • reap_node: Reap nodes from an reaped HTML document
  • reap_nodes: Reap nodes from an reaped HTML document
  • reap_table: Extract data from HTML tables
  • reap_text: Reap text, names and attributes from HTML
  • add_response_url_from: Add a ā€˜reapr_docā€™ response prefix URL to a data frame

Installation

devtools::install_git("https://git.sr.ht/~hrbrmstr/reapr")
# or 
devtools::install_git("https://gitlab.com/hrbrmstr/reapr.git")
# or
devtools::install_github("hrbrmstr/reapr")

Usage

library(reapr)
library(hrbrthemes) # sr.hr/~hrbrmstr/hrbrthemes | git[la|hu]b.com/hrbrmstr/hrbrthemes
library(tidyverse) # for some examples only

# current version
packageVersion("reapr")
## [1] '0.1.0'

Basic Reaping

x <- reap_url("http://rud.is/b")

x
##                Title: rud.is | "In God we trust. All others must bring data"
##         Original URL: http://rud.is/b
##            Final URL: https://rud.is/b/
##           Crawl-Date: 2019-01-17 19:51:09
##               Status: 200
##         Content-Type: text/html; charset=UTF-8
##                 Size: 50 kB
##           IP Address: 104.236.112.222
##                 Tags: body[1], center[1], form[1], h2[1], head[1], hgroup[1], html[1],
##                       label[1], noscript[1], section[1], title[1],
##                       aside[2], nav[2], ul[2], style[5], img[6],
##                       input[6], article[8], time[8], footer[9], h1[9],
##                       header[9], p[10], li[19], meta[20], div[31],
##                       script[40], span[49], link[53], a[94]
##           # Comments: 17
##   Total Request Time: 2.093s

The formatted object print-output shows much of what you get with a reaped URL.

reapr::real_url():

  • Uses httr::GET() to make web connections and retrieve content. This enables it to behave more like an actual (non-javascript-enabled) browser. You can pass anything httr::GET() can handle to ... (e.g. httr::user_agent()) to have as much granular control over the interaction as possible.
  • Returns a richer set of data. After the httr::response object is obtained many tasks are performed including:
    • timestamping the URL crawl
    • extraction of the asked-for URL and the final URL (in the case of redirects)
    • extraction of the IP address of the target server
    • extraction of both plaintext and parsed (xml_document) HTML
    • extraction of the plaintext webpage <title> (if any)
    • generation of a dynamic list tags in the document which can be fed directly to HTML/XML search/retrieval function (which may speed up node discovery)
    • extraction of the text of all comments in the HTML document
    • inclusion of the full httr::response object with the returned object
    • extraction of the time it took to make the complete request

Finally, it works with other package member functions to check the validity of the parsed xml_document and auto-regen the parse (since it has the full content available to it) prior to any other operations. This also makes reapr_doc object serializable without having to spend your own cycles on that.

If you need more or need the above in different ways please file issues.

Pre-computed Tags

On document retrieval, reapr automagically builds convenient R-accessible lists of all the tags in the retrieved document. They arenā€™t recursive, but they are a convenient ā€œbagsā€ of tags to use when you donā€™t feel like crafting that perfect XPath.

Letā€™s see what tags RStudio favors most on their Shiny home page:

x <- reap_url("https://shiny.rstudio.com/articles/")

x
##                Title: Shiny - Articles
##         Original URL: https://shiny.rstudio.com/articles/
##            Final URL: https://shiny.rstudio.com/articles/
##           Crawl-Date: 2019-01-17 19:51:10
##               Status: 200
##         Content-Type: text/html
##                 Size: 79 kB
##           IP Address: 13.35.78.118
##                 Tags: body[1], h1[1], head[1], html[1], title[1], meta[4], link[8],
##                       script[10], span[43], a[276], div[465]
##           # Comments: 25
##   Total Request Time: 0.191s

enframe(sort(lengths(x$tag))) %>%
  mutate(name = factor(name, levels = name)) %>%
  ggplot(aes(value, name)) +
  geom_segment(aes(xend = 0, yend = name), , size = 3, color = "goldenrod") +
  labs(
    x = "Tag frequency", y = NULL,
    title = "HTML Tag Distribution on RStudio's Shiny Homepage"
  ) +
  scale_x_comma(position = "top") +
  theme_ft_rc(grid = "X") +
  theme(axis.text.y = element_text(family = "mono"))

Lots and lots of <div>s!

x$tag$div
## {xml_nodeset (465)}
##  [1] <div id="app" class="shrinkHeader alwaysShrinkHeader">\n  <div id="main">\n    <!-- rstudio header -->\n    <div ...
##  [2] <div id="main">\n    <!-- rstudio header -->\n    <div id="rStudioHeader">\n      <div class="band">\n        <d ...
##  [3] <div id="rStudioHeader">\n      <div class="band">\n        <div class="innards bandContent">\n          <div>\n ...
##  [4] <div class="band">\n        <div class="innards bandContent">\n          <div>\n            <a class="productNam ...
##  [5] <div class="innards bandContent">\n          <div>\n            <a class="productName" href="/">Shiny</a>\n      ...
##  [6] <div>\n            <a class="productName" href="/">Shiny</a>\n            <div class="rStudio">\n<span>from </sp ...
##  [7] <div class="rStudio">\n<span>from </span> <a href="https://www.rstudio.com/"><div class="rStudioLogo"></div></a> ...
##  [8] <div class="rStudioLogo"></div>
##  [9] <div id="menu">\n            <div id="menuToggler"></div>\n            <div id="menuItems" class="">\n           ...
## [10] <div id="menuToggler"></div>
## [11] <div id="menuItems" class="">\n              <a class="menuItem" href="/tutorial/">Get Started</a>\n             ...
## [12] <div class="mainContent pushFooter">\n\n  <div class="band">\n    <a name="top"></a>\n    <div class="bandConten ...
## [13] <div class="band">\n    <a name="top"></a>\n    <div class="bandContent">\n      <h1>Articles</h1>\n    </div>\n ...
## [14] <div class="bandContent">\n      <h1>Articles</h1>\n    </div>
## [15] <div class="band articlesBand">\n    <div class="bandContent">\n      <div class="articles-outline splitColumns  ...
## [16] <div class="bandContent">\n      <div class="articles-outline splitColumns withMobileMargins">\n\n        \n     ...
## [17] <div class="articles-outline splitColumns withMobileMargins">\n\n        \n          <div class="column25 start" ...
## [18] <div class="column25 start">\n            <div class="section-title">Start</div>\n            \n              <d ...
## [19] <div class="section-title">Start</div>
## [20] <div class="subsection-group">\n                <div class="subsection-group-title"></div>\n                \n   ...
## ...

Letā€™s take a look at the article titles:

as.data.frame(x$tag$div) %>% 
  filter(class == "article-title") %>% 
  select(`Shiny Articles`=elem_content) %>% 
  knitr::kable()
Shiny Articles
The basic parts of a Shiny app
How to build a Shiny app
How to launch a Shiny app
How to get help
The Shiny Cheat sheet
App formats and launching apps
Two-file Shiny apps
Introduction to R Markdown
Introduction to interactive documents
R Markdown integration in the RStudio IDE
The R Markdown Cheat sheet
Setting Output args via Render functions
Generating downloadable reports
Dashboards
Shiny Gadgets
Designing Gadget UI
Reactivity - An overview
Stop reactions with isolate()
Execution scheduling
How to understand reactivity in R
Learn about your user with session$clientData
Database basics - dplyr and DBI
SQL injection prevention
Using the pool package (basics)
Using the pool package (advanced)
Using dplyr and pool to query a database
Persistent data storage in Shiny apps
Application layout guide
Display modes
Tabsets
Customize your UI with HTML
Build your entire UI with HTML
Build a dynamic UI that reacts to user input
HTML Templates
Shiny HTML Tags Glossary
Progress indicators
Modal dialogs
Notifications
Themes
Render images in a Shiny app
Displaying and customizing static tables
How to use DataTables in a Shiny App
Using Action Buttons
Using sliders
Help users download data from your app
Help users upload files to your app
Using selectize input
Interactive plots
Selecting rows of data
Interactive plots - advanced
htmlwidgets
JavaScript actions packaged for Shiny apps
How to build a JavaScript based widget
How to add functionality to JavaScript widgets
How to send messages from the browser to the server and back using Shiny
How to develop an interactive, dynamic help system for your app with introJS
How to create custom input bindings
Putting everything together to create an interactive dashboard
Style your apps with CSS
Build custom input objects
Build custom output objects
Add Google Analytics to a Shiny app
Packaging JavaScript code for Shiny
Communicating with Shiny via JavaScript
JavaScript Events in Shiny
Debugging Shiny applications
Upgrading to a new version of R
Handling missing inputs with req(ā€¦)
Scoping rules for Shiny apps
Reconnecting to Shiny apps
Sanitizing error messages
Write error messages for your UI with validate
Unicode characters in Shiny apps
shinytest
Modularizing Shiny app code
Shiny App Usage Tracking
Add Google Analytics to a Shiny app
Plot Caching
Profiling your Shiny app
Performance
Improving scalability with async programming
Scaling and Performance Tuning with shinyapps.io
Scaling and Performance Tuning with Shiny Server Pro and RStudio Connect
Deploying Shiny apps to the web
Shinyapps.io - Getting started
Shinyapps.io - Authentication and Authorization Model
Shinyapps.io - Setting up custom domains
Shinyapps.io - Sharing data across sessions
Shinyapps.io - Migrating authentication
Shiny Server - Introduction
Shiny Server and Shiny Server Pro - Allowing different libraries for different apps
Shiny Server Pro and RStudio Connect - Creating user privileges
Shiny Server Pro and RStudio Connect - Administrating deployed Shiny applications
Sharing apps to run locally
Save your app as a function
Bookmarking state
Advanced bookmarking
Bookmarking and modules

No XPath or CSS selectors!

Letā€™s abandon the tidyverse for base R piping for a minute and do something similar to extract and convert the index of CRAN Task Views to a markdown list (which will conveniently render here). Again, no XPath or CSS selectors required once we read in the URL:

x <- reap_url("https://cloud.r-project.org/web/views/")

as.data.frame(x$tag$a) %>% 
  add_response_url_from(x) %>% 
  subset(!grepl("^http[s]://", href)) %>% 
  transform(href = sprintf("- [%s](%s%s)", elem_content, prefix_url, href)) %>% 
  .[, "href", drop=TRUE] %>% 
  paste0(collapse = "\n") %>% 
  cat()

This functionality is not a panacea since they are just bags of tags, but it may save you some time and frustration.

Tables

Unlike rvest with itā€™s magical and wonderful html_table() reapr provides more raw control over the content of <table> elements. Letā€™s look at the ā€œpopulation change over timeā€ table from the Wikipedia page on the demography of the UK (https://en.wikipedia.org/wiki/Demography_of_the_United_Kingdom):

x <- reap_url("https://en.wikipedia.org/wiki/Demography_of_the_United_Kingdom")

reap_node(x, ".//table[contains(., 'Intercensal')]") %>% 
  reap_table()
## # A tibble: 18 x 8
##    V1         V2             V3             V4            V5            V6            V7            V8                  
##    <chr>      <chr>          <chr>          <chr>         <chr>         <chr>         <chr>         <chr>               
##  1 Intercensā€¦ Populationat ā€¦ Average annuaā€¦ Average annuā€¦ Average annuā€¦ Average annuā€¦ Average annuā€¦ Populationdensityatā€¦
##  2 Intercensā€¦ Populationat ā€¦ Overallchange  Births        Deaths        Net naturalcā€¦ Netmigration* Populationdensityatā€¦
##  3 1851ā€“1861  27,368,800     154,910        Unknown       Unknown       Unknown       Unknown       87                  
##  4 1861ā€“1871  28,917,900     256,680        Unknown       Unknown       Unknown       Unknown       92                  
##  5 1871ā€“1881  31,484,700     344,980        Unknown       Unknown       Unknown       Unknown       100                 
##  6 1881ā€“1891  34,934,500     286,790        Unknown       Unknown       Unknown       Unknown       111                 
##  7 1891ā€“1901  37,802,400     373,580        Unknown       Unknown       Unknown       Unknown       120                 
##  8 1901ā€“1911  38,237,000     385,000        1,091,000     624,000       467,000       āˆ’82,000       156                 
##  9 1911ā€“1921  42,082,000     195,000        975,000       689,000       286,000       āˆ’92,000       172                 
## 10 1921ā€“1931  44,027,000     201,000        824,000       555,000       268,000       āˆ’67,000       180                 
## 11 1931ā€“1951  46,038,000     213,000        793,000       603,000       190,000       22,000        188                 
## 12 1951ā€“1961  50,225,000     258,000        839,000       593,000       246,000       12,000        205                 
## 13 1961ā€“1971  52,807,000     312,000        962,000       638,000       324,000       āˆ’12,000       216                 
## 14 1971ā€“1981  55,928,000     42,000         736,000       666,000       69,000        āˆ’27,000       229                 
## 15 1981ā€“1991  56,357,000     108,000        757,000       655,000       103,000       5,000         231                 
## 16 1991ā€“2001  57,439,000     161,000        731,000       631,000       100,000       61,000        235                 
## 17 2001ā€“2011  59,113,000     324,000        722,000       588,000       134,000       191,000       242                 
## 18 2011ā€“2021  63,182,000     N/A            N/A           N/A           N/A           N/A           259

As you can see, it doesnā€™t do the cleanup work for you and has no way to even say thereā€™s a header. Thatā€™s because you can do that with rvest::html_table(). The equivalent reapr function gives you the raw table and handles colspan and rowspan insanity by adding the missing cells and filling in the gaps. You can use docxtractr::assign_colnames() to make a given row the column titles and docxtractr::mcga() or janitor::clean_names() to name them proper R names then readr::type_convert() to finish the task.

While that may seem overkill for this example (it is), it wouldnā€™t be if the table were more gnarly (Iā€™m working on an example for that which will replace this one when itā€™s done).

For truly gnarly tables you can get an overview of the structure (without the data frame conversion):

reap_node(x, ".//table[contains(., 'Intercensal')]") %>% 
  reap_table(raw = TRUE) -> raw_tbl

raw_tbl
## <table class='wikitable...'>
##   <row (noattrs)>
##     <cell rowspan='2'>
##     <cell rowspan='2'>
##     <cell colspan='5'>
##     <cell rowspan='2'>
##   <row (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##   <row (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell style='backgroun...' class='unknown t...'>
##     <cell style='backgroun...' class='unknown t...'>
##     <cell style='backgroun...' class='unknown t...'>
##     <cell style='backgroun...' class='unknown t...'>
##     <cell (noattrs)>
##   <row (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell style='backgroun...' class='unknown t...'>
##     <cell style='backgroun...' class='unknown t...'>
##     <cell style='backgroun...' class='unknown t...'>
##     <cell style='backgroun...' class='unknown t...'>
##     <cell (noattrs)>
##   <row (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell style='backgroun...' class='unknown t...'>
##     <cell style='backgroun...' class='unknown t...'>
##     <cell style='backgroun...' class='unknown t...'>
##     <cell style='backgroun...' class='unknown t...'>
##     <cell (noattrs)>
##   <row (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell style='backgroun...' class='unknown t...'>
##     <cell style='backgroun...' class='unknown t...'>
##     <cell style='backgroun...' class='unknown t...'>
##     <cell style='backgroun...' class='unknown t...'>
##     <cell (noattrs)>
##   <row (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell style='backgroun...' class='unknown t...'>
##     <cell style='backgroun...' class='unknown t...'>
##     <cell style='backgroun...' class='unknown t...'>
##     <cell style='backgroun...' class='unknown t...'>
##     <cell (noattrs)>
##   <row (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##   <row (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##   <row (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##   <row (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##   <row (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##   <row (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##   <row (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##   <row (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##   <row (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##   <row (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##   <row (noattrs)>
##     <cell (noattrs)>
##     <cell (noattrs)>
##     <cell data-sort-value='' style='backgroun...' class='table-na'>
##     <cell data-sort-value='' style='backgroun...' class='table-na'>
##     <cell data-sort-value='' style='backgroun...' class='table-na'>
##     <cell data-sort-value='' style='backgroun...' class='table-na'>
##     <cell data-sort-value='' style='backgroun...' class='table-na'>
##     <cell (noattrs)>

And work with the list it gives back (which contains all the HTML element attributes as R attributes so you can pull data stored in them if need be).

reapr Metrics

Lang # Files (%) LoC (%) Blank lines (%) # Lines (%)
R 13 0.81 405 0.87 148 0.72 251 0.69
Rmd 1 0.06 44 0.09 53 0.26 110 0.30
C 2 0.12 17 0.04 5 0.02 4 0.01

Code of Conduct

Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.

About

šŸ•øā†’ā„¹ļø Reap Information from Websites

Topics

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published