Skip to content

Commit

Permalink
fix broken links (microsoft#359)
Browse files Browse the repository at this point in the history
  • Loading branch information
wxchan authored and huanzhang12 committed Mar 26, 2017
1 parent 5e945d2 commit 3891cdb
Showing 1 changed file with 6 additions and 6 deletions.
12 changes: 6 additions & 6 deletions docs/Parameters.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,10 +21,10 @@ The parameter format is ```key1=value1 key2=value2 ... ``` . And parameters can
* ```regression_l2```, L2 loss, alias=```mean_squared_error```,```mse```
* ```regression_l1```, L1 loss, alias=```mean_absolute_error```,```mae```
* ```huber```, [Huber loss](https://en.wikipedia.org/wiki/Huber_loss "Huber loss - Wikipedia")
* ```fair```, [Fair loss](http://research.microsoft.com/en-us/um/people/zhang/INRIA/Publis/Tutorial-Estim/node24.html)
* ```fair```, [Fair loss](https://www.kaggle.com/c/allstate-claims-severity/discussion/24520)
* ```poisson```, [Poisson regression](https://en.wikipedia.org/wiki/Poisson_regression "Poisson regression")
* ```binary```, binary classification application
* ```lambdarank```, lambdarank application
* ```lambdarank```, [lambdarank](https://pdfs.semanticscholar.org/fc9a/e09f9ced555558fdf1e997c0a5411fb51f15.pdf) application
* ```multiclass```, multi-class classification application, should set ```num_class``` as well
* ```boosting```, default=```gbdt```, type=enum, options=```gbdt```,```dart```, alias=```boost```,```boosting_type```
* ```gbdt```, traditional Gradient Boosting Decision Tree
Expand Down Expand Up @@ -178,7 +178,7 @@ The parameter format is ```key1=value1 key2=value2 ... ``` . And parameters can
* ```huber_delta```, default=```1.0```, type=double
* parameter for [Huber loss](https://en.wikipedia.org/wiki/Huber_loss "Huber loss - Wikipedia"). Will be used in regression task.
* ```fair_c```, default=```1.0```, type=double
* parameter for [Fair loss](http://research.microsoft.com/en-us/um/people/zhang/INRIA/Publis/Tutorial-Estim/node24.html). Will be used in regression task.
* parameter for [Fair loss](https://www.kaggle.com/c/allstate-claims-severity/discussion/24520). Will be used in regression task.
* ```poission_max_delta_step```, default=```0.7```, type=double
* parameter used to safeguard optimization
* ```scale_pos_weight```, default=```1.0```, type=double
Expand All @@ -201,12 +201,12 @@ The parameter format is ```key1=value1 key2=value2 ... ``` . And parameters can
* ```l1```, absolute loss, alias=```mean_absolute_error```, ```mae```
* ```l2```, square loss, alias=```mean_squared_error```, ```mse```
* ```huber```, [Huber loss](https://en.wikipedia.org/wiki/Huber_loss "Huber loss - Wikipedia")
* ```fair```, [Fair loss](http://research.microsoft.com/en-us/um/people/zhang/INRIA/Publis/Tutorial-Estim/node24.html)
* ```fair```, [Fair loss](https://www.kaggle.com/c/allstate-claims-severity/discussion/24520)
* ```poisson```, [Poisson regression](https://en.wikipedia.org/wiki/Poisson_regression "Poisson regression")
* ```ndcg```, [NDCG](https://en.wikipedia.org/wiki/Discounted_cumulative_gain#Normalized_DCG)
* ```map```, [MAP](https://www.kaggle.com/wiki/MeanAveragePrecision)
* ```auc```, [AUC](https://en.wikipedia.org/wiki/Area_under_the_curve_(pharmacokinetics))
* ```binary_logloss```, [log loss](https://www.kaggle.com/wiki/LogarithmicLoss)
* ```auc```, [AUC](https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve)
* ```binary_logloss```, [log loss](https://www.kaggle.com/wiki/LogLoss)
* ```binary_error```. For one sample ```0``` for correct classification, ```1``` for error classification.
* ```multi_logloss```, log loss for mulit-class classification
* ```multi_error```. error rate for mulit-class classification
Expand Down

0 comments on commit 3891cdb

Please sign in to comment.