Skip to content

Commit

Permalink
add quantized qwen2 (#2329)
Browse files Browse the repository at this point in the history
* add quantized version of qwen2 and corresponding example for qwen2-instruct

* fix quantized qwen2 clippy error
  • Loading branch information
zhuojg authored Jul 12, 2024
1 parent a226a97 commit c63048d
Show file tree
Hide file tree
Showing 4 changed files with 641 additions and 0 deletions.
11 changes: 11 additions & 0 deletions candle-examples/examples/quantized-qwen2-instruct/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
# candle-quantized-qwen2-instruct

[Qwen2]((https://qwenlm.github.io/blog/qwen2/)) is an upgraded version of Qwen1.5, released by Alibaba Cloud.

## Running the example

```bash
cargo run --example quantized-qwen2-instruct --release -- --prompt "Write a function to count prime numbers up to N."
```

0.5b, 1.5b, 7b and 72b models are available via `--model` argument.
306 changes: 306 additions & 0 deletions candle-examples/examples/quantized-qwen2-instruct/main.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,306 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;

#[cfg(feature = "accelerate")]
extern crate accelerate_src;

use clap::{Parser, ValueEnum};
use std::io::Write;
use tokenizers::Tokenizer;

use candle::quantized::gguf_file;
use candle::Tensor;
use candle_transformers::generation::{LogitsProcessor, Sampling};

use candle_examples::token_output_stream::TokenOutputStream;
use candle_transformers::models::quantized_qwen2::ModelWeights as Qwen2;

const DEFAULT_PROMPT: &str = "Write a function to count prime numbers up to N. ";

#[derive(Clone, Debug, Copy, PartialEq, Eq, ValueEnum)]
enum Which {
#[value(name = "0.5b")]
W2_0_5b,
#[value(name = "1.5b")]
W2_1_5b,
#[value(name = "7b")]
W2_7b,
#[value(name = "72b")]
W2_72b,
}

#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// GGUF file to load, typically a .gguf file generated by the quantize command from llama.cpp
#[arg(long)]
model: Option<String>,

/// The initial prompt, use 'interactive' for entering multiple prompts in an interactive way
/// and 'chat' for an interactive model where history of previous prompts and generated tokens
/// is preserved.
#[arg(long)]
prompt: Option<String>,

/// The length of the sample to generate (in tokens).
#[arg(short = 'n', long, default_value_t = 1000)]
sample_len: usize,

/// The tokenizer config in json format.
#[arg(long)]
tokenizer: Option<String>,

/// The temperature used to generate samples, use 0 for greedy sampling.
#[arg(long, default_value_t = 0.8)]
temperature: f64,

/// Nucleus sampling probability cutoff.
#[arg(long)]
top_p: Option<f64>,

/// Only sample among the top K samples.
#[arg(long)]
top_k: Option<usize>,

/// The seed to use when generating random samples.
#[arg(long, default_value_t = 299792458)]
seed: u64,

/// Enable tracing (generates a trace-timestamp.json file).
#[arg(long)]
tracing: bool,

/// Process prompt elements separately.
#[arg(long)]
split_prompt: bool,

/// Run on CPU rather than GPU even if a GPU is available.
#[arg(long)]
cpu: bool,

/// Penalty to be applied for repeating tokens, 1. means no penalty.
#[arg(long, default_value_t = 1.1)]
repeat_penalty: f32,

/// The context size to consider for the repeat penalty.
#[arg(long, default_value_t = 64)]
repeat_last_n: usize,

/// The model size to use.
#[arg(long, default_value = "0.5b")]
which: Which,
}

impl Args {
fn tokenizer(&self) -> anyhow::Result<Tokenizer> {
let tokenizer_path = match &self.tokenizer {
Some(config) => std::path::PathBuf::from(config),
None => {
let api = hf_hub::api::sync::Api::new()?;
let repo = match self.which {
Which::W2_0_5b => "Qwen/Qwen2-0.5B-Instruct",
Which::W2_1_5b => "Qwen/Qwen2-1.5B-Instruct",
Which::W2_7b => "Qwen/Qwen2-7B-Instruct",
Which::W2_72b => "Qwen/Qwen2-72B-Instruct",
};
let api = api.model(repo.to_string());
api.get("tokenizer.json")?
}
};
Tokenizer::from_file(tokenizer_path).map_err(anyhow::Error::msg)
}

fn model(&self) -> anyhow::Result<std::path::PathBuf> {
let model_path = match &self.model {
Some(config) => std::path::PathBuf::from(config),
None => {
let (repo, filename, revision) = match self.which {
Which::W2_0_5b => (
"Qwen/Qwen2-0.5B-Instruct-GGUF",
"qwen2-0_5b-instruct-q4_0.gguf",
"main",
),
Which::W2_1_5b => (
"Qwen/Qwen2-1.5B-Instruct-GGUF",
"qwen2-1_5b-instruct-q4_0.gguf",
"main",
),
Which::W2_7b => (
"Qwen/Qwen2-7B-Instruct-GGUF",
"qwen2-7b-instruct-q4_0.gguf",
"main",
),
Which::W2_72b => (
"Qwen/Qwen2-72B-Instruct-GGUF",
"qwen2-72b-instruct-q4_0.gguf",
"main",
),
};
let api = hf_hub::api::sync::Api::new()?;
api.repo(hf_hub::Repo::with_revision(
repo.to_string(),
hf_hub::RepoType::Model,
revision.to_string(),
))
.get(filename)?
}
};
Ok(model_path)
}
}

fn format_size(size_in_bytes: usize) -> String {
if size_in_bytes < 1_000 {
format!("{}B", size_in_bytes)
} else if size_in_bytes < 1_000_000 {
format!("{:.2}KB", size_in_bytes as f64 / 1e3)
} else if size_in_bytes < 1_000_000_000 {
format!("{:.2}MB", size_in_bytes as f64 / 1e6)
} else {
format!("{:.2}GB", size_in_bytes as f64 / 1e9)
}
}

fn main() -> anyhow::Result<()> {
use tracing_chrome::ChromeLayerBuilder;
use tracing_subscriber::prelude::*;

let args = Args::parse();
let _guard = if args.tracing {
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
tracing_subscriber::registry().with(chrome_layer).init();
Some(guard)
} else {
None
};

println!(
"avx: {}, neon: {}, simd128: {}, f16c: {}",
candle::utils::with_avx(),
candle::utils::with_neon(),
candle::utils::with_simd128(),
candle::utils::with_f16c()
);
println!(
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
args.temperature, args.repeat_penalty, args.repeat_last_n
);

let model_path = args.model()?;
let mut file = std::fs::File::open(&model_path)?;
let start = std::time::Instant::now();
let device = candle_examples::device(args.cpu)?;

let mut model = {
let model = gguf_file::Content::read(&mut file).map_err(|e| e.with_path(model_path))?;
let mut total_size_in_bytes = 0;
for (_, tensor) in model.tensor_infos.iter() {
let elem_count = tensor.shape.elem_count();
total_size_in_bytes +=
elem_count * tensor.ggml_dtype.type_size() / tensor.ggml_dtype.block_size();
}
println!(
"loaded {:?} tensors ({}) in {:.2}s",
model.tensor_infos.len(),
&format_size(total_size_in_bytes),
start.elapsed().as_secs_f32(),
);
Qwen2::from_gguf(model, &mut file, &device)?
};
println!("model built");

let tokenizer = args.tokenizer()?;
let mut tos = TokenOutputStream::new(tokenizer);
let prompt_str = args.prompt.unwrap_or_else(|| DEFAULT_PROMPT.to_string());
let prompt_str = format!(
"<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n",
prompt_str
);
print!("formatted instruct prompt: {}", &prompt_str);
let tokens = tos
.tokenizer()
.encode(prompt_str, true)
.map_err(anyhow::Error::msg)?;
let tokens = tokens.get_ids();
let to_sample = args.sample_len.saturating_sub(1);
let mut all_tokens = vec![];
let mut logits_processor = {
let temperature = args.temperature;
let sampling = if temperature <= 0. {
Sampling::ArgMax
} else {
match (args.top_k, args.top_p) {
(None, None) => Sampling::All { temperature },
(Some(k), None) => Sampling::TopK { k, temperature },
(None, Some(p)) => Sampling::TopP { p, temperature },
(Some(k), Some(p)) => Sampling::TopKThenTopP { k, p, temperature },
}
};
LogitsProcessor::from_sampling(args.seed, sampling)
};
let start_prompt_processing = std::time::Instant::now();
let mut next_token = if !args.split_prompt {
let input = Tensor::new(tokens, &device)?.unsqueeze(0)?;
let logits = model.forward(&input, 0)?;
let logits = logits.squeeze(0)?;
logits_processor.sample(&logits)?
} else {
let mut next_token = 0;
for (pos, token) in tokens.iter().enumerate() {
let input = Tensor::new(&[*token], &device)?.unsqueeze(0)?;
let logits = model.forward(&input, pos)?;
let logits = logits.squeeze(0)?;
next_token = logits_processor.sample(&logits)?
}
next_token
};
let prompt_dt = start_prompt_processing.elapsed();
all_tokens.push(next_token);
if let Some(t) = tos.next_token(next_token)? {
print!("{t}");
std::io::stdout().flush()?;
}
let eos_token = *tos.tokenizer().get_vocab(true).get("<|im_end|>").unwrap();
let start_post_prompt = std::time::Instant::now();
let mut sampled = 0;
for index in 0..to_sample {
let input = Tensor::new(&[next_token], &device)?.unsqueeze(0)?;
let logits = model.forward(&input, tokens.len() + index)?;
let logits = logits.squeeze(0)?;
let logits = if args.repeat_penalty == 1. {
logits
} else {
let start_at = all_tokens.len().saturating_sub(args.repeat_last_n);
candle_transformers::utils::apply_repeat_penalty(
&logits,
args.repeat_penalty,
&all_tokens[start_at..],
)?
};
next_token = logits_processor.sample(&logits)?;
all_tokens.push(next_token);
if let Some(t) = tos.next_token(next_token)? {
print!("{t}");
std::io::stdout().flush()?;
}
sampled += 1;
if next_token == eos_token {
break;
};
}
if let Some(rest) = tos.decode_rest().map_err(candle::Error::msg)? {
print!("{rest}");
}
std::io::stdout().flush()?;
let dt = start_post_prompt.elapsed();
println!(
"\n\n{:4} prompt tokens processed: {:.2} token/s",
tokens.len(),
tokens.len() as f64 / prompt_dt.as_secs_f64(),
);
println!(
"{sampled:4} tokens generated: {:.2} token/s",
sampled as f64 / dt.as_secs_f64(),
);
Ok(())
}
1 change: 1 addition & 0 deletions candle-transformers/src/models/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,7 @@ pub mod quantized_moondream;
pub mod quantized_mpt;
pub mod quantized_phi;
pub mod quantized_phi3;
pub mod quantized_qwen2;
pub mod quantized_recurrent_gemma;
pub mod quantized_rwkv_v5;
pub mod quantized_rwkv_v6;
Expand Down
Loading

0 comments on commit c63048d

Please sign in to comment.