Skip to content

Commit

Permalink
Set dev version (#5247)
Browse files Browse the repository at this point in the history
  • Loading branch information
albertvillanova authored Nov 16, 2022
1 parent edf1902 commit 27b4035
Show file tree
Hide file tree
Showing 2 changed files with 2 additions and 2 deletions.
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -200,7 +200,7 @@

setup(
name="datasets",
version="2.7.0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
version="2.7.1.dev0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
description="HuggingFace community-driven open-source library of datasets",
long_description=open("README.md", encoding="utf-8").read(),
long_description_content_type="text/markdown",
Expand Down
2 changes: 1 addition & 1 deletion src/datasets/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@
# pylint: enable=line-too-long
# pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position

__version__ = "2.7.0"
__version__ = "2.7.1.dev0"

import platform

Expand Down

1 comment on commit 27b4035

@github-actions
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Show benchmarks

PyArrow==6.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.009446 / 0.011353 (-0.001907) 0.005105 / 0.011008 (-0.005903) 0.098386 / 0.038508 (0.059878) 0.036165 / 0.023109 (0.013056) 0.316562 / 0.275898 (0.040664) 0.365854 / 0.323480 (0.042374) 0.007956 / 0.007986 (-0.000029) 0.005551 / 0.004328 (0.001223) 0.074921 / 0.004250 (0.070671) 0.046721 / 0.037052 (0.009669) 0.305359 / 0.258489 (0.046870) 0.345076 / 0.293841 (0.051235) 0.042384 / 0.128546 (-0.086163) 0.015478 / 0.075646 (-0.060169) 0.336061 / 0.419271 (-0.083211) 0.051942 / 0.043533 (0.008409) 0.295551 / 0.255139 (0.040412) 0.317756 / 0.283200 (0.034556) 0.106674 / 0.141683 (-0.035009) 1.488502 / 1.452155 (0.036347) 1.500673 / 1.492716 (0.007957)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.216671 / 0.018006 (0.198665) 0.440070 / 0.000490 (0.439580) 0.004233 / 0.000200 (0.004033) 0.000089 / 0.000054 (0.000035)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.025969 / 0.037411 (-0.011443) 0.107682 / 0.014526 (0.093157) 0.116780 / 0.176557 (-0.059776) 0.158768 / 0.737135 (-0.578367) 0.123037 / 0.296338 (-0.173301)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.401247 / 0.215209 (0.186038) 3.989537 / 2.077655 (1.911882) 1.837083 / 1.504120 (0.332963) 1.629805 / 1.541195 (0.088610) 1.706883 / 1.468490 (0.238393) 0.694209 / 4.584777 (-3.890568) 3.810960 / 3.745712 (0.065248) 2.096983 / 5.269862 (-3.172879) 1.325094 / 4.565676 (-3.240582) 0.085593 / 0.424275 (-0.338682) 0.012253 / 0.007607 (0.004646) 0.503187 / 0.226044 (0.277142) 5.049629 / 2.268929 (2.780701) 2.280011 / 55.444624 (-53.164614) 1.928102 / 6.876477 (-4.948375) 2.096846 / 2.142072 (-0.045227) 0.850522 / 4.805227 (-3.954705) 0.167736 / 6.500664 (-6.332928) 0.063548 / 0.075469 (-0.011921)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.509892 / 1.841788 (-0.331896) 13.917616 / 8.074308 (5.843308) 25.076629 / 10.191392 (14.885237) 0.890512 / 0.680424 (0.210088) 0.580442 / 0.534201 (0.046241) 0.437753 / 0.579283 (-0.141531) 0.440041 / 0.434364 (0.005677) 0.276284 / 0.540337 (-0.264054) 0.284642 / 1.386936 (-1.102294)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.007705 / 0.011353 (-0.003648) 0.005252 / 0.011008 (-0.005756) 0.096589 / 0.038508 (0.058081) 0.036536 / 0.023109 (0.013427) 0.383550 / 0.275898 (0.107652) 0.415472 / 0.323480 (0.091992) 0.006254 / 0.007986 (-0.001731) 0.004160 / 0.004328 (-0.000169) 0.072407 / 0.004250 (0.068157) 0.042038 / 0.037052 (0.004986) 0.383481 / 0.258489 (0.124992) 0.450722 / 0.293841 (0.156881) 0.037487 / 0.128546 (-0.091059) 0.012307 / 0.075646 (-0.063340) 0.330257 / 0.419271 (-0.089014) 0.050615 / 0.043533 (0.007082) 0.382606 / 0.255139 (0.127467) 0.400517 / 0.283200 (0.117317) 0.110190 / 0.141683 (-0.031493) 1.451883 / 1.452155 (-0.000271) 1.631727 / 1.492716 (0.139011)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.275557 / 0.018006 (0.257551) 0.451205 / 0.000490 (0.450716) 0.031321 / 0.000200 (0.031121) 0.000316 / 0.000054 (0.000261)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.030844 / 0.037411 (-0.006568) 0.116919 / 0.014526 (0.102394) 0.125073 / 0.176557 (-0.051483) 0.163167 / 0.737135 (-0.573968) 0.130691 / 0.296338 (-0.165648)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.429094 / 0.215209 (0.213885) 4.270973 / 2.077655 (2.193318) 2.044014 / 1.504120 (0.539894) 1.839563 / 1.541195 (0.298368) 2.000123 / 1.468490 (0.531633) 0.709220 / 4.584777 (-3.875557) 3.799030 / 3.745712 (0.053318) 2.134424 / 5.269862 (-3.135437) 1.343438 / 4.565676 (-3.222238) 0.086983 / 0.424275 (-0.337292) 0.012313 / 0.007607 (0.004706) 0.523972 / 0.226044 (0.297928) 5.249285 / 2.268929 (2.980356) 2.547544 / 55.444624 (-52.897080) 2.192007 / 6.876477 (-4.684470) 2.245784 / 2.142072 (0.103712) 0.841720 / 4.805227 (-3.963507) 0.169859 / 6.500664 (-6.330805) 0.063815 / 0.075469 (-0.011654)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.516205 / 1.841788 (-0.325582) 14.134764 / 8.074308 (6.060456) 12.614965 / 10.191392 (2.423573) 0.902829 / 0.680424 (0.222405) 0.580867 / 0.534201 (0.046666) 0.421801 / 0.579283 (-0.157482) 0.418542 / 0.434364 (-0.015822) 0.253917 / 0.540337 (-0.286420) 0.259293 / 1.386936 (-1.127643)

Please sign in to comment.