Skip to content

Commit

Permalink
typo
Browse files Browse the repository at this point in the history
  • Loading branch information
lhoestq committed Feb 5, 2021
1 parent 8dbe535 commit 857b58e
Showing 1 changed file with 1 addition and 1 deletion.
2 changes: 1 addition & 1 deletion datasets/oscar/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2670,7 +2670,7 @@ This example was too long and was cropped:


<details>
<summary>Click to expand the Data/size information for each language (deduplicated)</summary>
<summary>Click to expand the Data/size information for each language (original)</summary>

#### unshuffled_original_af

Expand Down

1 comment on commit 857b58e

@github-actions
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Show benchmarks

PyArrow==0.17.1

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.020383 / 0.011353 (0.009031) 0.018123 / 0.011008 (0.007114) 0.049687 / 0.038508 (0.011179) 0.034695 / 0.023109 (0.011586) 0.238374 / 0.275898 (-0.037524) 0.247389 / 0.323480 (-0.076091) 0.007000 / 0.007986 (-0.000985) 0.004943 / 0.004328 (0.000614) 0.008959 / 0.004250 (0.004709) 0.049383 / 0.037052 (0.012331) 0.272544 / 0.258489 (0.014055) 0.255715 / 0.293841 (-0.038126) 0.187258 / 0.128546 (0.058712) 0.139803 / 0.075646 (0.064157) 0.458103 / 0.419271 (0.038832) 0.646781 / 0.043533 (0.603248) 0.221972 / 0.255139 (-0.033167) 0.250524 / 0.283200 (-0.032676) 6.453663 / 0.141683 (6.311980) 1.875262 / 1.452155 (0.423107) 1.961235 / 1.492716 (0.468518)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.041751 / 0.037411 (0.004340) 0.021638 / 0.014526 (0.007112) 0.029397 / 0.176557 (-0.147159) 0.086588 / 0.737135 (-0.650547) 0.051327 / 0.296338 (-0.245011)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.218120 / 0.215209 (0.002911) 2.266052 / 2.077655 (0.188397) 1.374732 / 1.504120 (-0.129388) 1.254841 / 1.541195 (-0.286353) 1.232338 / 1.468490 (-0.236152) 7.678330 / 4.584777 (3.093553) 6.416199 / 3.745712 (2.670487) 9.091213 / 5.269862 (3.821352) 7.866116 / 4.565676 (3.300440) 0.790500 / 0.424275 (0.366224) 0.012484 / 0.007607 (0.004877) 0.250370 / 0.226044 (0.024326) 2.668822 / 2.268929 (0.399893) 1.793603 / 55.444624 (-53.651021) 1.657270 / 6.876477 (-5.219207) 1.680719 / 2.142072 (-0.461353) 7.515010 / 4.805227 (2.709782) 5.344753 / 6.500664 (-1.155911) 7.411402 / 0.075469 (7.335933)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 12.241584 / 1.841788 (10.399796) 15.617016 / 8.074308 (7.542707) 17.683864 / 10.191392 (7.492472) 0.524287 / 0.680424 (-0.156137) 0.299597 / 0.534201 (-0.234604) 0.913756 / 0.579283 (0.334472) 0.684851 / 0.434364 (0.250487) 0.867758 / 0.540337 (0.327420) 1.781008 / 1.386936 (0.394072)
PyArrow==1.0
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.020040 / 0.011353 (0.008687) 0.016803 / 0.011008 (0.005795) 0.048287 / 0.038508 (0.009779) 0.033552 / 0.023109 (0.010443) 0.400834 / 0.275898 (0.124936) 0.439275 / 0.323480 (0.115795) 0.006786 / 0.007986 (-0.001199) 0.004994 / 0.004328 (0.000665) 0.007307 / 0.004250 (0.003056) 0.057571 / 0.037052 (0.020518) 0.419799 / 0.258489 (0.161310) 0.443093 / 0.293841 (0.149252) 0.164652 / 0.128546 (0.036105) 0.133984 / 0.075646 (0.058337) 0.469202 / 0.419271 (0.049930) 0.446600 / 0.043533 (0.403067) 0.373022 / 0.255139 (0.117883) 0.443656 / 0.283200 (0.160456) 1.794487 / 0.141683 (1.652804) 1.939906 / 1.452155 (0.487752) 1.922970 / 1.492716 (0.430254)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.041639 / 0.037411 (0.004228) 0.022049 / 0.014526 (0.007524) 0.046296 / 0.176557 (-0.130261) 0.087130 / 0.737135 (-0.650005) 0.048993 / 0.296338 (-0.247346)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.307585 / 0.215209 (0.092376) 2.935243 / 2.077655 (0.857588) 1.985529 / 1.504120 (0.481409) 1.854451 / 1.541195 (0.313257) 1.956936 / 1.468490 (0.488446) 7.352496 / 4.584777 (2.767719) 6.255742 / 3.745712 (2.510029) 8.699170 / 5.269862 (3.429308) 7.817149 / 4.565676 (3.251473) 0.711535 / 0.424275 (0.287260) 0.011234 / 0.007607 (0.003627) 0.328139 / 0.226044 (0.102094) 3.323609 / 2.268929 (1.054680) 2.421097 / 55.444624 (-53.023527) 2.307451 / 6.876477 (-4.569026) 2.270485 / 2.142072 (0.128412) 7.202446 / 4.805227 (2.397218) 6.442090 / 6.500664 (-0.058575) 8.641599 / 0.075469 (8.566130)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 12.602333 / 1.841788 (10.760545) 13.808231 / 8.074308 (5.733923) 17.511355 / 10.191392 (7.319963) 0.951212 / 0.680424 (0.270788) 0.614147 / 0.534201 (0.079946) 0.853775 / 0.579283 (0.274492) 0.678253 / 0.434364 (0.243889) 0.843689 / 0.540337 (0.303351) 1.708789 / 1.386936 (0.321853)

CML watermark

Please sign in to comment.