Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Inject templates for ASR datasets #2565

Merged
merged 17 commits into from
Jul 5, 2021
16 changes: 12 additions & 4 deletions datasets/arabic_speech_corpus/README.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
---
pretty_name: Arabic Speech Corpus
annotations_creators:
- expert-generated
language_creators:
Expand All @@ -9,15 +10,15 @@ licenses:
- cc-by-4.0
multilinguality:
- monolingual
paperswithcode_id: arabic-speech-corpus
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- other
- automatic-speech-recognition
task_ids:
- other-other-automatic speech recognition
paperswithcode_id: arabic-speech-corpus
- speech-recognition
---

# Dataset Card for Arabic Speech Corpus
Expand Down Expand Up @@ -152,7 +153,14 @@ CC BY 4.0

### Citation Information

[Needs More Information]
```
@phdthesis{halabi2016modern,
title={Modern standard Arabic phonetics for speech synthesis},
author={Halabi, Nawar},
year={2016},
school={University of Southampton}
}
```

### Contributions

Expand Down
2 changes: 2 additions & 0 deletions datasets/arabic_speech_corpus/arabic_speech_corpus.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@
import os

import datasets
from datasets.tasks import AutomaticSpeechRecognition


_CITATION = """\
Expand Down Expand Up @@ -91,6 +92,7 @@ def _info(self):
supervised_keys=("file", "text"),
homepage=_URL,
citation=_CITATION,
task_templates=[AutomaticSpeechRecognition(audio_file_path_column="file", transcription_column="text")],
)

def _split_generators(self, dl_manager):
Expand Down
2 changes: 1 addition & 1 deletion datasets/arabic_speech_corpus/dataset_infos.json
Original file line number Diff line number Diff line change
@@ -1 +1 @@
{"clean": {"description": "This Speech corpus has been developed as part of PhD work carried out by Nawar Halabi at the University of Southampton.\nThe corpus was recorded in south Levantine Arabic\n(Damascian accent) using a professional studio. Synthesized speech as an output using this corpus has produced a high quality, natural voice.\nNote that in order to limit the required storage for preparing this dataset, the audio\nis stored in the .flac format and is not converted to a float32 array. To convert, the audio\nfile to a float32 array, please make use of the `.map()` function as follows:\n\n\n```python\nimport soundfile as sf\n\ndef map_to_array(batch):\n speech_array, _ = sf.read(batch[\"file\"])\n batch[\"speech\"] = speech_array\n return batch\n\ndataset = dataset.map(map_to_array, remove_columns=[\"file\"])\n```\n", "citation": "@phdthesis{halabi2016modern,\n title={Modern standard Arabic phonetics for speech synthesis},\n author={Halabi, Nawar},\n year={2016},\n school={University of Southampton}\n}\n", "homepage": "http://en.arabicspeechcorpus.com/arabic-speech-corpus.zip", "license": "", "features": {"file": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "phonetic": {"dtype": "string", "id": null, "_type": "Value"}, "orthographic": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "file", "output": "text"}, "builder_name": "arabic_speech_corpus", "config_name": "clean", "version": {"version_str": "2.1.0", "description": "", "major": 2, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1002365, "num_examples": 1813, "dataset_name": "arabic_speech_corpus"}, "test": {"name": "test", "num_bytes": 65784, "num_examples": 100, "dataset_name": "arabic_speech_corpus"}}, "download_checksums": {"http://en.arabicspeechcorpus.com/arabic-speech-corpus.zip": {"num_bytes": 1192302846, "checksum": "1df85219370fb1ebe8bfc46aa886265586411d04e7c1caa5a5b9847b3ad5f9de"}}, "download_size": 1192302846, "post_processing_size": null, "dataset_size": 1068149, "size_in_bytes": 1193370995}}
{"clean": {"description": "This Speech corpus has been developed as part of PhD work carried out by Nawar Halabi at the University of Southampton.\nThe corpus was recorded in south Levantine Arabic\n(Damascian accent) using a professional studio. Synthesized speech as an output using this corpus has produced a high quality, natural voice.\nNote that in order to limit the required storage for preparing this dataset, the audio\nis stored in the .flac format and is not converted to a float32 array. To convert, the audio\nfile to a float32 array, please make use of the `.map()` function as follows:\n\n\n```python\nimport soundfile as sf\n\ndef map_to_array(batch):\n speech_array, _ = sf.read(batch[\"file\"])\n batch[\"speech\"] = speech_array\n return batch\n\ndataset = dataset.map(map_to_array, remove_columns=[\"file\"])\n```\n", "citation": "@phdthesis{halabi2016modern,\n title={Modern standard Arabic phonetics for speech synthesis},\n author={Halabi, Nawar},\n year={2016},\n school={University of Southampton}\n}\n", "homepage": "http://en.arabicspeechcorpus.com/arabic-speech-corpus.zip", "license": "", "features": {"file": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "phonetic": {"dtype": "string", "id": null, "_type": "Value"}, "orthographic": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "file", "output": "text"}, "task_templates": [{"task": "automatic-speech-recognition", "audio_file_path_column": "file", "transcription_column": "text"}], "builder_name": "arabic_speech_corpus", "config_name": "clean", "version": {"version_str": "2.1.0", "description": "", "major": 2, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1002365, "num_examples": 1813, "dataset_name": "arabic_speech_corpus"}, "test": {"name": "test", "num_bytes": 65784, "num_examples": 100, "dataset_name": "arabic_speech_corpus"}}, "download_checksums": {"http://en.arabicspeechcorpus.com/arabic-speech-corpus.zip": {"num_bytes": 1192302846, "checksum": "1df85219370fb1ebe8bfc46aa886265586411d04e7c1caa5a5b9847b3ad5f9de"}}, "download_size": 1192302846, "post_processing_size": null, "dataset_size": 1068149, "size_in_bytes": 1193370995}}
11 changes: 8 additions & 3 deletions datasets/common_voice/README.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
---
pretty_name: Common Voice
annotations_creators:
- crowdsourced
language_creators:
Expand Down Expand Up @@ -190,11 +191,11 @@ size_categories:
zh-TW:
- 10K<n<100K
source_datasets:
- extended|other-common-voice
- extended|common_voice
task_categories:
- other
- automatic-speech-recognition
task_ids:
- other-other-automatic-speech-recognition
- speech-recognition
paperswithcode_id: common-voice
---

Expand Down Expand Up @@ -358,3 +359,7 @@ The dataset consists of people who have donated their voice online. You agree t
year = 2020
}
```

### Contributions

Thanks to [@BirgerMoell](https://github.com/BirgerMoell) for adding this dataset.
4 changes: 4 additions & 0 deletions datasets/common_voice/common_voice.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
import os

import datasets
from datasets.tasks import AutomaticSpeechRecognition


_DATA_URL = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/{}.tar.gz"
Expand Down Expand Up @@ -649,6 +650,9 @@ def _info(self):
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
task_templates=[
AutomaticSpeechRecognition(audio_file_path_column="path", transcription_column="sentence")
],
)

def _split_generators(self, dl_manager):
Expand Down
2 changes: 1 addition & 1 deletion datasets/common_voice/dataset_infos.json

Large diffs are not rendered by default.

18 changes: 14 additions & 4 deletions datasets/librispeech_asr/README.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
---
pretty_name: LibriSpeech
annotations_creators:
- expert-generated
language_creators:
Expand All @@ -10,15 +11,15 @@ licenses:
- cc-by-4.0
multilinguality:
- monolingual
paperswithcode_id: librispeech-1
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- other
- automatic-speech-recognition
task_ids:
- other-other-automatic speech recognition
paperswithcode_id: librispeech-1
- speech-recognition
---

# Dataset Card for librispeech_asr
Expand Down Expand Up @@ -181,7 +182,16 @@ CC BY 4.0

### Citation Information

[Needs More Information]
```
@inproceedings{panayotov2015librispeech,
title={Librispeech: an ASR corpus based on public domain audio books},
author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},
booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},
pages={5206--5210},
year={2015},
organization={IEEE}
}
```

### Contributions

Expand Down
2 changes: 1 addition & 1 deletion datasets/librispeech_asr/dataset_infos.json
Original file line number Diff line number Diff line change
@@ -1 +1 @@
{"clean": {"description": "LibriSpeech is a corpus of approximately 1000 hours of read English speech with sampling rate of 16 kHz,\nprepared by Vassil Panayotov with the assistance of Daniel Povey. The data is derived from read\naudiobooks from the LibriVox project, and has been carefully segmented and aligned.87\n\nNote that in order to limit the required storage for preparing this dataset, the audio\nis stored in the .flac format and is not converted to a float32 array. To convert, the audio\nfile to a float32 array, please make use of the `.map()` function as follows:\n\n\n```python\nimport soundfile as sf\n\ndef map_to_array(batch):\n speech_array, _ = sf.read(batch[\"file\"])\n batch[\"speech\"] = speech_array\n return batch\n\ndataset = dataset.map(map_to_array, remove_columns=[\"file\"])\n", "citation": "@inproceedings{panayotov2015librispeech,\n title={Librispeech: an ASR corpus based on public domain audio books},\n author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},\n booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},\n pages={5206--5210},\n year={2015},\n organization={IEEE}\n}\n", "homepage": "http://www.openslr.org/12", "license": "", "features": {"file": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "speaker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "chapter_id": {"dtype": "int64", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "speech", "output": "text"}, "builder_name": "librispeech_asr", "config_name": "clean", "version": {"version_str": "2.1.0", "description": "", "major": 2, "minor": 1, "patch": 0}, "splits": {"train.100": {"name": "train.100", "num_bytes": 11823891, "num_examples": 28539, "dataset_name": "librispeech_asr"}, "train.360": {"name": "train.360", "num_bytes": 43049490, "num_examples": 104014, "dataset_name": "librispeech_asr"}, "validation": {"name": "validation", "num_bytes": 894510, "num_examples": 2703, "dataset_name": "librispeech_asr"}, "test": {"name": "test", "num_bytes": 868614, "num_examples": 2620, "dataset_name": "librispeech_asr"}}, "download_checksums": {"http://www.openslr.org/resources/12/dev-clean.tar.gz": {"num_bytes": 337926286, "checksum": "76f87d090650617fca0cac8f88b9416e0ebf80350acb97b343a85fa903728ab3"}, "http://www.openslr.org/resources/12/test-clean.tar.gz": {"num_bytes": 346663984, "checksum": "39fde525e59672dc6d1551919b1478f724438a95aa55f874b576be21967e6c23"}, "http://www.openslr.org/resources/12/train-clean-100.tar.gz": {"num_bytes": 6387309499, "checksum": "d4ddd1d5a6ab303066f14971d768ee43278a5f2a0aa43dc716b0e64ecbbbf6e2"}, "http://www.openslr.org/resources/12/train-clean-360.tar.gz": {"num_bytes": 23049477885, "checksum": "146a56496217e96c14334a160df97fffedd6e0a04e66b9c5af0d40be3c792ecf"}}, "download_size": 30121377654, "post_processing_size": null, "dataset_size": 56636505, "size_in_bytes": 30178014159}, "other": {"description": "LibriSpeech is a corpus of approximately 1000 hours of read English speech with sampling rate of 16 kHz,\nprepared by Vassil Panayotov with the assistance of Daniel Povey. The data is derived from read\naudiobooks from the LibriVox project, and has been carefully segmented and aligned.87\n\nNote that in order to limit the required storage for preparing this dataset, the audio\nis stored in the .flac format and is not converted to a float32 array. To convert, the audio\nfile to a float32 array, please make use of the `.map()` function as follows:\n\n\n```python\nimport soundfile as sf\n\ndef map_to_array(batch):\n speech_array, _ = sf.read(batch[\"file\"])\n batch[\"speech\"] = speech_array\n return batch\n\ndataset = dataset.map(map_to_array, remove_columns=[\"file\"])\n", "citation": "@inproceedings{panayotov2015librispeech,\n title={Librispeech: an ASR corpus based on public domain audio books},\n author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},\n booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},\n pages={5206--5210},\n year={2015},\n organization={IEEE}\n}\n", "homepage": "http://www.openslr.org/12", "license": "", "features": {"file": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "speaker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "chapter_id": {"dtype": "int64", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "speech", "output": "text"}, "builder_name": "librispeech_asr", "config_name": "other", "version": {"version_str": "2.1.0", "description": "", "major": 2, "minor": 1, "patch": 0}, "splits": {"train.500": {"name": "train.500", "num_bytes": 59561081, "num_examples": 148688, "dataset_name": "librispeech_asr"}, "validation": {"name": "validation", "num_bytes": 907644, "num_examples": 2864, "dataset_name": "librispeech_asr"}, "test": {"name": "test", "num_bytes": 934838, "num_examples": 2939, "dataset_name": "librispeech_asr"}}, "download_checksums": {"http://www.openslr.org/resources/12/test-other.tar.gz": {"num_bytes": 328757843, "checksum": "d09c181bba5cf717b3dee7d4d592af11a3ee3a09e08ae025c5506f6ebe961c29"}, "http://www.openslr.org/resources/12/dev-other.tar.gz": {"num_bytes": 314305928, "checksum": "12661c48e8c3fe1de2c1caa4c3e135193bfb1811584f11f569dd12645aa84365"}, "http://www.openslr.org/resources/12/train-other-500.tar.gz": {"num_bytes": 30593501606, "checksum": "ddb22f27f96ec163645d53215559df6aa36515f26e01dd70798188350adcb6d2"}}, "download_size": 31236565377, "post_processing_size": null, "dataset_size": 61403563, "size_in_bytes": 31297968940}}
{"clean": {"description": "LibriSpeech is a corpus of approximately 1000 hours of read English speech with sampling rate of 16 kHz,\nprepared by Vassil Panayotov with the assistance of Daniel Povey. The data is derived from read\naudiobooks from the LibriVox project, and has been carefully segmented and aligned.87\n\nNote that in order to limit the required storage for preparing this dataset, the audio\nis stored in the .flac format and is not converted to a float32 array. To convert, the audio\nfile to a float32 array, please make use of the `.map()` function as follows:\n\n\n```python\nimport soundfile as sf\n\ndef map_to_array(batch):\n speech_array, _ = sf.read(batch[\"file\"])\n batch[\"speech\"] = speech_array\n return batch\n\ndataset = dataset.map(map_to_array, remove_columns=[\"file\"])\n", "citation": "@inproceedings{panayotov2015librispeech,\n title={Librispeech: an ASR corpus based on public domain audio books},\n author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},\n booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},\n pages={5206--5210},\n year={2015},\n organization={IEEE}\n}\n", "homepage": "http://www.openslr.org/12", "license": "", "features": {"file": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "speaker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "chapter_id": {"dtype": "int64", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "speech", "output": "text"}, "task_templates": [{"task": "automatic-speech-recognition", "audio_file_path_column": "file", "transcription_column": "text"}], "builder_name": "librispeech_asr", "config_name": "clean", "version": {"version_str": "2.1.0", "description": "", "major": 2, "minor": 1, "patch": 0}, "splits": {"train.100": {"name": "train.100", "num_bytes": 11823891, "num_examples": 28539, "dataset_name": "librispeech_asr"}, "train.360": {"name": "train.360", "num_bytes": 43049490, "num_examples": 104014, "dataset_name": "librispeech_asr"}, "validation": {"name": "validation", "num_bytes": 894510, "num_examples": 2703, "dataset_name": "librispeech_asr"}, "test": {"name": "test", "num_bytes": 868614, "num_examples": 2620, "dataset_name": "librispeech_asr"}}, "download_checksums": {"http://www.openslr.org/resources/12/dev-clean.tar.gz": {"num_bytes": 337926286, "checksum": "76f87d090650617fca0cac8f88b9416e0ebf80350acb97b343a85fa903728ab3"}, "http://www.openslr.org/resources/12/test-clean.tar.gz": {"num_bytes": 346663984, "checksum": "39fde525e59672dc6d1551919b1478f724438a95aa55f874b576be21967e6c23"}, "http://www.openslr.org/resources/12/train-clean-100.tar.gz": {"num_bytes": 6387309499, "checksum": "d4ddd1d5a6ab303066f14971d768ee43278a5f2a0aa43dc716b0e64ecbbbf6e2"}, "http://www.openslr.org/resources/12/train-clean-360.tar.gz": {"num_bytes": 23049477885, "checksum": "146a56496217e96c14334a160df97fffedd6e0a04e66b9c5af0d40be3c792ecf"}}, "download_size": 30121377654, "post_processing_size": null, "dataset_size": 56636505, "size_in_bytes": 30178014159}, "other": {"description": "LibriSpeech is a corpus of approximately 1000 hours of read English speech with sampling rate of 16 kHz,\nprepared by Vassil Panayotov with the assistance of Daniel Povey. The data is derived from read\naudiobooks from the LibriVox project, and has been carefully segmented and aligned.87\n\nNote that in order to limit the required storage for preparing this dataset, the audio\nis stored in the .flac format and is not converted to a float32 array. To convert, the audio\nfile to a float32 array, please make use of the `.map()` function as follows:\n\n\n```python\nimport soundfile as sf\n\ndef map_to_array(batch):\n speech_array, _ = sf.read(batch[\"file\"])\n batch[\"speech\"] = speech_array\n return batch\n\ndataset = dataset.map(map_to_array, remove_columns=[\"file\"])\n", "citation": "@inproceedings{panayotov2015librispeech,\n title={Librispeech: an ASR corpus based on public domain audio books},\n author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},\n booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},\n pages={5206--5210},\n year={2015},\n organization={IEEE}\n}\n", "homepage": "http://www.openslr.org/12", "license": "", "features": {"file": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "speaker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "chapter_id": {"dtype": "int64", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "speech", "output": "text"}, "task_templates": [{"task": "automatic-speech-recognition", "audio_file_path_column": "file", "transcription_column": "text"}], "builder_name": "librispeech_asr", "config_name": "other", "version": {"version_str": "2.1.0", "description": "", "major": 2, "minor": 1, "patch": 0}, "splits": {"train.500": {"name": "train.500", "num_bytes": 59561081, "num_examples": 148688, "dataset_name": "librispeech_asr"}, "validation": {"name": "validation", "num_bytes": 907644, "num_examples": 2864, "dataset_name": "librispeech_asr"}, "test": {"name": "test", "num_bytes": 934838, "num_examples": 2939, "dataset_name": "librispeech_asr"}}, "download_checksums": {"http://www.openslr.org/resources/12/test-other.tar.gz": {"num_bytes": 328757843, "checksum": "d09c181bba5cf717b3dee7d4d592af11a3ee3a09e08ae025c5506f6ebe961c29"}, "http://www.openslr.org/resources/12/dev-other.tar.gz": {"num_bytes": 314305928, "checksum": "12661c48e8c3fe1de2c1caa4c3e135193bfb1811584f11f569dd12645aa84365"}, "http://www.openslr.org/resources/12/train-other-500.tar.gz": {"num_bytes": 30593501606, "checksum": "ddb22f27f96ec163645d53215559df6aa36515f26e01dd70798188350adcb6d2"}}, "download_size": 31236565377, "post_processing_size": null, "dataset_size": 61403563, "size_in_bytes": 31297968940}}
Loading