Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add pre-commit config yaml file to enable automatic code formatting #5561

Merged
merged 4 commits into from
Feb 23, 2023

Conversation

polinaeterna
Copy link
Contributor

@polinaeterna polinaeterna commented Feb 21, 2023

@huggingface/datasets do you think it would be useful? Motivation - sometimes PRs are like 30% "fix: style" commits :)

If so - I need to double check the config but for me locally it works as expected.

@HuggingFaceDocBuilderDev
Copy link

HuggingFaceDocBuilderDev commented Feb 21, 2023

The documentation is not available anymore as the PR was closed or merged.

Copy link
Member

@lhoestq lhoestq left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

sounds good to me - maybe @albertvillanova is also familiar with this ?

Copy link
Contributor

@nateraw nateraw left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM! 🤗

Only gripe I have with pre-commit is when you're forced to use it. With this being optional, its a super nice addition for folks who prefer to use it vs Makefile :). Thank you for adding

@Skylion007
Copy link
Contributor

Better yet have someone enable pre-commit CI https://pre-commit.ci/ and it will apply the pre-commit fixes to the PR automatically as an additional commit.

@polinaeterna
Copy link
Contributor Author

@Skylion007 hi! I agree with @nateraw here, I'd better not force to use pre-commit so I'm not setting it up in the CI for now. And regarding end-of-file - currently it's being done by black.

@polinaeterna polinaeterna merged commit a940972 into huggingface:main Feb 23, 2023
@github-actions
Copy link

Show benchmarks

PyArrow==6.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.008704 / 0.011353 (-0.002649) 0.004448 / 0.011008 (-0.006560) 0.099530 / 0.038508 (0.061022) 0.029739 / 0.023109 (0.006629) 0.329267 / 0.275898 (0.053369) 0.368805 / 0.323480 (0.045325) 0.006852 / 0.007986 (-0.001133) 0.004575 / 0.004328 (0.000246) 0.076838 / 0.004250 (0.072588) 0.033885 / 0.037052 (-0.003167) 0.336340 / 0.258489 (0.077851) 0.384880 / 0.293841 (0.091039) 0.034051 / 0.128546 (-0.094495) 0.011638 / 0.075646 (-0.064009) 0.321650 / 0.419271 (-0.097622) 0.041202 / 0.043533 (-0.002330) 0.330841 / 0.255139 (0.075702) 0.361329 / 0.283200 (0.078130) 0.084864 / 0.141683 (-0.056819) 1.454005 / 1.452155 (0.001850) 1.542167 / 1.492716 (0.049451)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.196207 / 0.018006 (0.178200) 0.400675 / 0.000490 (0.400185) 0.000403 / 0.000200 (0.000203) 0.000059 / 0.000054 (0.000005)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.022694 / 0.037411 (-0.014717) 0.095139 / 0.014526 (0.080613) 0.104129 / 0.176557 (-0.072427) 0.168688 / 0.737135 (-0.568447) 0.109243 / 0.296338 (-0.187096)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.427520 / 0.215209 (0.212311) 4.237726 / 2.077655 (2.160071) 2.191887 / 1.504120 (0.687767) 1.987750 / 1.541195 (0.446555) 1.996540 / 1.468490 (0.528050) 0.696416 / 4.584777 (-3.888361) 3.454536 / 3.745712 (-0.291176) 2.023600 / 5.269862 (-3.246261) 1.336394 / 4.565676 (-3.229282) 0.082933 / 0.424275 (-0.341342) 0.012572 / 0.007607 (0.004965) 0.534330 / 0.226044 (0.308285) 5.347588 / 2.268929 (3.078659) 2.640397 / 55.444624 (-52.804228) 2.338266 / 6.876477 (-4.538211) 2.431969 / 2.142072 (0.289897) 0.821335 / 4.805227 (-3.983893) 0.151905 / 6.500664 (-6.348759) 0.067983 / 0.075469 (-0.007486)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.228841 / 1.841788 (-0.612947) 13.660437 / 8.074308 (5.586128) 13.729442 / 10.191392 (3.538050) 0.165835 / 0.680424 (-0.514589) 0.028753 / 0.534201 (-0.505448) 0.400143 / 0.579283 (-0.179140) 0.403714 / 0.434364 (-0.030650) 0.492168 / 0.540337 (-0.048170) 0.581151 / 1.386936 (-0.805785)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006289 / 0.011353 (-0.005064) 0.004419 / 0.011008 (-0.006589) 0.077220 / 0.038508 (0.038712) 0.027170 / 0.023109 (0.004060) 0.344988 / 0.275898 (0.069090) 0.374150 / 0.323480 (0.050670) 0.004842 / 0.007986 (-0.003144) 0.003289 / 0.004328 (-0.001039) 0.076200 / 0.004250 (0.071950) 0.036287 / 0.037052 (-0.000766) 0.345764 / 0.258489 (0.087275) 0.387439 / 0.293841 (0.093599) 0.031547 / 0.128546 (-0.096999) 0.011586 / 0.075646 (-0.064060) 0.086599 / 0.419271 (-0.332672) 0.042338 / 0.043533 (-0.001195) 0.355384 / 0.255139 (0.100246) 0.369474 / 0.283200 (0.086275) 0.090945 / 0.141683 (-0.050738) 1.488632 / 1.452155 (0.036477) 1.554606 / 1.492716 (0.061890)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.212962 / 0.018006 (0.194956) 0.399647 / 0.000490 (0.399157) 0.003055 / 0.000200 (0.002856) 0.000083 / 0.000054 (0.000029)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.024349 / 0.037411 (-0.013062) 0.100342 / 0.014526 (0.085817) 0.105657 / 0.176557 (-0.070899) 0.175139 / 0.737135 (-0.561997) 0.110014 / 0.296338 (-0.186324)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.434785 / 0.215209 (0.219575) 4.346950 / 2.077655 (2.269295) 2.045411 / 1.504120 (0.541291) 1.844258 / 1.541195 (0.303064) 1.889503 / 1.468490 (0.421013) 0.704530 / 4.584777 (-3.880247) 3.362435 / 3.745712 (-0.383277) 2.797205 / 5.269862 (-2.472656) 1.504431 / 4.565676 (-3.061245) 0.083331 / 0.424275 (-0.340945) 0.012274 / 0.007607 (0.004666) 0.531123 / 0.226044 (0.305078) 5.322588 / 2.268929 (3.053660) 2.483875 / 55.444624 (-52.960750) 2.147218 / 6.876477 (-4.729258) 2.164024 / 2.142072 (0.021952) 0.807191 / 4.805227 (-3.998036) 0.151189 / 6.500664 (-6.349475) 0.068027 / 0.075469 (-0.007442)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.316001 / 1.841788 (-0.525787) 13.892785 / 8.074308 (5.818477) 13.485982 / 10.191392 (3.294590) 0.138904 / 0.680424 (-0.541520) 0.016748 / 0.534201 (-0.517453) 0.379840 / 0.579283 (-0.199443) 0.384854 / 0.434364 (-0.049510) 0.464275 / 0.540337 (-0.076063) 0.553622 / 1.386936 (-0.833314)

@polinaeterna polinaeterna deleted the add-precommit-config branch February 23, 2023 18:49
@github-actions
Copy link

Show benchmarks

PyArrow==6.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.009179 / 0.011353 (-0.002174) 0.005080 / 0.011008 (-0.005929) 0.099061 / 0.038508 (0.060553) 0.035252 / 0.023109 (0.012143) 0.293496 / 0.275898 (0.017598) 0.360365 / 0.323480 (0.036886) 0.007757 / 0.007986 (-0.000229) 0.003985 / 0.004328 (-0.000343) 0.076021 / 0.004250 (0.071771) 0.042286 / 0.037052 (0.005233) 0.316542 / 0.258489 (0.058053) 0.341711 / 0.293841 (0.047870) 0.037970 / 0.128546 (-0.090576) 0.011977 / 0.075646 (-0.063670) 0.333341 / 0.419271 (-0.085931) 0.049211 / 0.043533 (0.005678) 0.297401 / 0.255139 (0.042262) 0.313424 / 0.283200 (0.030224) 0.105719 / 0.141683 (-0.035964) 1.487879 / 1.452155 (0.035724) 1.529785 / 1.492716 (0.037068)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.201062 / 0.018006 (0.183056) 0.438024 / 0.000490 (0.437534) 0.002129 / 0.000200 (0.001929) 0.000083 / 0.000054 (0.000028)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.026422 / 0.037411 (-0.010989) 0.104863 / 0.014526 (0.090337) 0.114934 / 0.176557 (-0.061623) 0.179173 / 0.737135 (-0.557962) 0.119734 / 0.296338 (-0.176604)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.397195 / 0.215209 (0.181986) 3.959945 / 2.077655 (1.882290) 1.794059 / 1.504120 (0.289939) 1.606814 / 1.541195 (0.065619) 1.674681 / 1.468490 (0.206191) 0.680130 / 4.584777 (-3.904646) 3.742730 / 3.745712 (-0.002982) 2.021793 / 5.269862 (-3.248069) 1.322726 / 4.565676 (-3.242950) 0.084519 / 0.424275 (-0.339756) 0.012012 / 0.007607 (0.004405) 0.510076 / 0.226044 (0.284032) 5.084163 / 2.268929 (2.815234) 2.241032 / 55.444624 (-53.203592) 1.911936 / 6.876477 (-4.964540) 1.947992 / 2.142072 (-0.194080) 0.838779 / 4.805227 (-3.966448) 0.165103 / 6.500664 (-6.335561) 0.060722 / 0.075469 (-0.014747)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.180274 / 1.841788 (-0.661514) 14.285364 / 8.074308 (6.211056) 12.941205 / 10.191392 (2.749813) 0.153815 / 0.680424 (-0.526609) 0.028554 / 0.534201 (-0.505647) 0.441551 / 0.579283 (-0.137732) 0.434906 / 0.434364 (0.000542) 0.516120 / 0.540337 (-0.024217) 0.603062 / 1.386936 (-0.783874)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.007287 / 0.011353 (-0.004066) 0.004998 / 0.011008 (-0.006010) 0.074997 / 0.038508 (0.036489) 0.033209 / 0.023109 (0.010100) 0.336836 / 0.275898 (0.060938) 0.365562 / 0.323480 (0.042082) 0.005739 / 0.007986 (-0.002246) 0.003942 / 0.004328 (-0.000387) 0.074681 / 0.004250 (0.070430) 0.049530 / 0.037052 (0.012478) 0.335642 / 0.258489 (0.077153) 0.388874 / 0.293841 (0.095033) 0.037198 / 0.128546 (-0.091349) 0.011983 / 0.075646 (-0.063664) 0.087601 / 0.419271 (-0.331671) 0.053761 / 0.043533 (0.010228) 0.334142 / 0.255139 (0.079003) 0.351348 / 0.283200 (0.068148) 0.107462 / 0.141683 (-0.034221) 1.497015 / 1.452155 (0.044860) 1.608287 / 1.492716 (0.115571)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.255395 / 0.018006 (0.237389) 0.439141 / 0.000490 (0.438651) 0.021391 / 0.000200 (0.021191) 0.000230 / 0.000054 (0.000176)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.028331 / 0.037411 (-0.009080) 0.108744 / 0.014526 (0.094218) 0.118201 / 0.176557 (-0.058355) 0.189556 / 0.737135 (-0.547579) 0.123112 / 0.296338 (-0.173226)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.431394 / 0.215209 (0.216185) 4.296121 / 2.077655 (2.218466) 2.126371 / 1.504120 (0.622251) 1.978178 / 1.541195 (0.436983) 2.082674 / 1.468490 (0.614184) 0.701789 / 4.584777 (-3.882988) 3.791495 / 3.745712 (0.045783) 2.115267 / 5.269862 (-3.154594) 1.342159 / 4.565676 (-3.223517) 0.088132 / 0.424275 (-0.336143) 0.011903 / 0.007607 (0.004295) 0.528398 / 0.226044 (0.302354) 5.270077 / 2.268929 (3.001148) 2.498860 / 55.444624 (-52.945765) 2.155515 / 6.876477 (-4.720962) 2.192866 / 2.142072 (0.050793) 0.859596 / 4.805227 (-3.945631) 0.170544 / 6.500664 (-6.330120) 0.063883 / 0.075469 (-0.011587)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.240679 / 1.841788 (-0.601109) 14.497379 / 8.074308 (6.423071) 12.881417 / 10.191392 (2.690025) 0.147295 / 0.680424 (-0.533129) 0.017465 / 0.534201 (-0.516736) 0.424695 / 0.579283 (-0.154588) 0.414929 / 0.434364 (-0.019435) 0.536079 / 0.540337 (-0.004259) 0.638245 / 1.386936 (-0.748691)

@github-actions
Copy link

Show benchmarks

PyArrow==6.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.008806 / 0.011353 (-0.002547) 0.004712 / 0.011008 (-0.006297) 0.102383 / 0.038508 (0.063875) 0.030260 / 0.023109 (0.007151) 0.330175 / 0.275898 (0.054277) 0.376816 / 0.323480 (0.053337) 0.008065 / 0.007986 (0.000079) 0.003534 / 0.004328 (-0.000794) 0.078824 / 0.004250 (0.074573) 0.036704 / 0.037052 (-0.000349) 0.331848 / 0.258489 (0.073359) 0.351031 / 0.293841 (0.057190) 0.033406 / 0.128546 (-0.095140) 0.011543 / 0.075646 (-0.064103) 0.322114 / 0.419271 (-0.097157) 0.041249 / 0.043533 (-0.002284) 0.309413 / 0.255139 (0.054274) 0.329156 / 0.283200 (0.045956) 0.088636 / 0.141683 (-0.053047) 1.508226 / 1.452155 (0.056071) 1.557203 / 1.492716 (0.064487)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.196696 / 0.018006 (0.178690) 0.426360 / 0.000490 (0.425870) 0.001263 / 0.000200 (0.001064) 0.000079 / 0.000054 (0.000024)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.023747 / 0.037411 (-0.013664) 0.100756 / 0.014526 (0.086230) 0.105817 / 0.176557 (-0.070739) 0.172573 / 0.737135 (-0.564562) 0.110705 / 0.296338 (-0.185634)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.436913 / 0.215209 (0.221704) 4.365753 / 2.077655 (2.288099) 2.201346 / 1.504120 (0.697226) 1.978800 / 1.541195 (0.437605) 1.951585 / 1.468490 (0.483094) 0.699208 / 4.584777 (-3.885569) 3.381492 / 3.745712 (-0.364220) 2.966174 / 5.269862 (-2.303687) 1.487521 / 4.565676 (-3.078156) 0.082673 / 0.424275 (-0.341602) 0.012436 / 0.007607 (0.004829) 0.553276 / 0.226044 (0.327232) 5.554081 / 2.268929 (3.285153) 2.653286 / 55.444624 (-52.791339) 2.404788 / 6.876477 (-4.471689) 2.484610 / 2.142072 (0.342537) 0.817073 / 4.805227 (-3.988154) 0.151619 / 6.500664 (-6.349045) 0.068259 / 0.075469 (-0.007210)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.273481 / 1.841788 (-0.568306) 13.908825 / 8.074308 (5.834517) 13.106695 / 10.191392 (2.915303) 0.139609 / 0.680424 (-0.540815) 0.028425 / 0.534201 (-0.505776) 0.395626 / 0.579283 (-0.183657) 0.405526 / 0.434364 (-0.028838) 0.465628 / 0.540337 (-0.074709) 0.542824 / 1.386936 (-0.844112)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006821 / 0.011353 (-0.004532) 0.004570 / 0.011008 (-0.006438) 0.076568 / 0.038508 (0.038060) 0.028109 / 0.023109 (0.004999) 0.342768 / 0.275898 (0.066870) 0.390680 / 0.323480 (0.067200) 0.005056 / 0.007986 (-0.002930) 0.003359 / 0.004328 (-0.000970) 0.075835 / 0.004250 (0.071584) 0.038888 / 0.037052 (0.001836) 0.343489 / 0.258489 (0.085000) 0.400766 / 0.293841 (0.106925) 0.031816 / 0.128546 (-0.096730) 0.011637 / 0.075646 (-0.064009) 0.085474 / 0.419271 (-0.333797) 0.041740 / 0.043533 (-0.001793) 0.342501 / 0.255139 (0.087362) 0.377467 / 0.283200 (0.094267) 0.091532 / 0.141683 (-0.050151) 1.457368 / 1.452155 (0.005213) 1.537187 / 1.492716 (0.044471)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.187507 / 0.018006 (0.169501) 0.415706 / 0.000490 (0.415217) 0.001816 / 0.000200 (0.001616) 0.000072 / 0.000054 (0.000018)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.026251 / 0.037411 (-0.011161) 0.106609 / 0.014526 (0.092083) 0.109822 / 0.176557 (-0.066735) 0.180462 / 0.737135 (-0.556674) 0.114647 / 0.296338 (-0.181691)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.438804 / 0.215209 (0.223595) 4.387960 / 2.077655 (2.310306) 2.056804 / 1.504120 (0.552684) 1.848584 / 1.541195 (0.307389) 1.939470 / 1.468490 (0.470980) 0.702539 / 4.584777 (-3.882238) 3.419535 / 3.745712 (-0.326177) 1.933889 / 5.269862 (-3.335973) 1.189631 / 4.565676 (-3.376045) 0.084105 / 0.424275 (-0.340170) 0.012520 / 0.007607 (0.004913) 0.538125 / 0.226044 (0.312081) 5.370000 / 2.268929 (3.101072) 2.497487 / 55.444624 (-52.947137) 2.156054 / 6.876477 (-4.720423) 2.225909 / 2.142072 (0.083837) 0.811456 / 4.805227 (-3.993771) 0.151461 / 6.500664 (-6.349203) 0.066940 / 0.075469 (-0.008530)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.301246 / 1.841788 (-0.540542) 14.459755 / 8.074308 (6.385447) 13.147151 / 10.191392 (2.955759) 0.129236 / 0.680424 (-0.551188) 0.016427 / 0.534201 (-0.517774) 0.380047 / 0.579283 (-0.199236) 0.392217 / 0.434364 (-0.042147) 0.470338 / 0.540337 (-0.069999) 0.559800 / 1.386936 (-0.827136)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

6 participants