Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Deprecate task api #5865

Merged
merged 5 commits into from
Jul 10, 2023
Merged

Deprecate task api #5865

merged 5 commits into from
Jul 10, 2023

Conversation

mariosasko
Copy link
Collaborator

The task API is not well adopted in the ecosystem, so this PR deprecates it. The train_eval_index is a newer, more flexible solution that should be used instead (I think?).

These are the projects that still use the task API :

  • the image classification example in Transformers: here and here
  • autotrain: here
  • api-inference-community: here (but the rest of the code does not call the resolve_dataset function)

So we need to update these files after the merge.

cc @lewtun

@HuggingFaceDocBuilderDev
Copy link

HuggingFaceDocBuilderDev commented May 15, 2023

The documentation is not available anymore as the PR was closed or merged.

@lhoestq
Copy link
Member

lhoestq commented May 15, 2023

If it's easy to keep supporting it we can keep it no ? There are many datasets on the hub that implement the tasks templates in dataset scripts and it's maybe easier to keep task templates than opening PRs to those datasets.

@polinaeterna
Copy link
Contributor

polinaeterna commented May 15, 2023

do we know if people use the tasks api?

edit: i mean, i'm fine with removing it if it's not used much, especially considering that it's not documented well.

@mariosasko
Copy link
Collaborator Author

mariosasko commented Jul 7, 2023

@lhoestq

Less than 80 public datasets (all canonical) implement task_templates, so updating them should be easy.

PS: I skipped gated datasets when checking for the presence of task_templates, but it's safe to assume their contribution to the total count is insignificant.

@github-actions
Copy link

github-actions bot commented Jul 7, 2023

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006480 / 0.011353 (-0.004872) 0.003904 / 0.011008 (-0.007104) 0.084287 / 0.038508 (0.045779) 0.071438 / 0.023109 (0.048329) 0.309823 / 0.275898 (0.033925) 0.341038 / 0.323480 (0.017558) 0.005163 / 0.007986 (-0.002822) 0.003291 / 0.004328 (-0.001037) 0.064473 / 0.004250 (0.060222) 0.053385 / 0.037052 (0.016332) 0.323561 / 0.258489 (0.065072) 0.346332 / 0.293841 (0.052491) 0.030588 / 0.128546 (-0.097958) 0.008342 / 0.075646 (-0.067305) 0.287205 / 0.419271 (-0.132067) 0.051953 / 0.043533 (0.008420) 0.310925 / 0.255139 (0.055786) 0.344443 / 0.283200 (0.061244) 0.022754 / 0.141683 (-0.118928) 1.459648 / 1.452155 (0.007494) 1.528413 / 1.492716 (0.035697)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.206404 / 0.018006 (0.188398) 0.461864 / 0.000490 (0.461374) 0.004501 / 0.000200 (0.004302) 0.000080 / 0.000054 (0.000026)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.026891 / 0.037411 (-0.010520) 0.081206 / 0.014526 (0.066680) 0.093648 / 0.176557 (-0.082908) 0.148491 / 0.737135 (-0.588645) 0.093874 / 0.296338 (-0.202464)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.401715 / 0.215209 (0.186506) 4.018597 / 2.077655 (1.940943) 2.029735 / 1.504120 (0.525615) 1.860069 / 1.541195 (0.318875) 1.935712 / 1.468490 (0.467222) 0.485896 / 4.584777 (-4.098881) 3.638177 / 3.745712 (-0.107535) 5.124058 / 5.269862 (-0.145804) 3.099666 / 4.565676 (-1.466011) 0.057173 / 0.424275 (-0.367102) 0.007240 / 0.007607 (-0.000367) 0.478758 / 0.226044 (0.252713) 4.798471 / 2.268929 (2.529543) 2.502980 / 55.444624 (-52.941645) 2.170650 / 6.876477 (-4.705827) 2.381394 / 2.142072 (0.239321) 0.578766 / 4.805227 (-4.226462) 0.132342 / 6.500664 (-6.368322) 0.059759 / 0.075469 (-0.015710)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.249238 / 1.841788 (-0.592549) 19.224673 / 8.074308 (11.150365) 13.786894 / 10.191392 (3.595502) 0.164633 / 0.680424 (-0.515791) 0.018065 / 0.534201 (-0.516136) 0.390589 / 0.579283 (-0.188694) 0.408993 / 0.434364 (-0.025370) 0.457001 / 0.540337 (-0.083336) 0.625327 / 1.386936 (-0.761609)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006827 / 0.011353 (-0.004526) 0.004007 / 0.011008 (-0.007001) 0.065239 / 0.038508 (0.026731) 0.079829 / 0.023109 (0.056719) 0.400323 / 0.275898 (0.124425) 0.434158 / 0.323480 (0.110678) 0.005314 / 0.007986 (-0.002671) 0.003354 / 0.004328 (-0.000974) 0.065044 / 0.004250 (0.060794) 0.060315 / 0.037052 (0.023262) 0.401513 / 0.258489 (0.143024) 0.441119 / 0.293841 (0.147278) 0.031783 / 0.128546 (-0.096763) 0.008608 / 0.075646 (-0.067038) 0.071755 / 0.419271 (-0.347517) 0.048816 / 0.043533 (0.005283) 0.393896 / 0.255139 (0.138757) 0.412156 / 0.283200 (0.128956) 0.024410 / 0.141683 (-0.117272) 1.515159 / 1.452155 (0.063005) 1.562217 / 1.492716 (0.069501)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.229993 / 0.018006 (0.211987) 0.449898 / 0.000490 (0.449409) 0.000376 / 0.000200 (0.000176) 0.000056 / 0.000054 (0.000002)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.030297 / 0.037411 (-0.007115) 0.086737 / 0.014526 (0.072212) 0.098312 / 0.176557 (-0.078244) 0.152890 / 0.737135 (-0.584246) 0.099335 / 0.296338 (-0.197003)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.415786 / 0.215209 (0.200577) 4.137606 / 2.077655 (2.059952) 2.120082 / 1.504120 (0.615963) 1.943984 / 1.541195 (0.402789) 2.040821 / 1.468490 (0.572331) 0.479273 / 4.584777 (-4.105504) 3.563854 / 3.745712 (-0.181858) 3.396071 / 5.269862 (-1.873790) 2.011302 / 4.565676 (-2.554374) 0.057202 / 0.424275 (-0.367073) 0.007338 / 0.007607 (-0.000269) 0.488378 / 0.226044 (0.262333) 4.881615 / 2.268929 (2.612686) 2.669685 / 55.444624 (-52.774939) 2.258236 / 6.876477 (-4.618241) 2.343303 / 2.142072 (0.201230) 0.606762 / 4.805227 (-4.198466) 0.133190 / 6.500664 (-6.367475) 0.062971 / 0.075469 (-0.012498)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.345215 / 1.841788 (-0.496573) 20.023713 / 8.074308 (11.949405) 14.555777 / 10.191392 (4.364385) 0.162388 / 0.680424 (-0.518036) 0.018528 / 0.534201 (-0.515673) 0.393055 / 0.579283 (-0.186229) 0.411820 / 0.434364 (-0.022544) 0.461705 / 0.540337 (-0.078633) 0.629395 / 1.386936 (-0.757541)

@lhoestq
Copy link
Member

lhoestq commented Jul 7, 2023

@github-actions
Copy link

github-actions bot commented Jul 7, 2023

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.009100 / 0.011353 (-0.002253) 0.005158 / 0.011008 (-0.005850) 0.109291 / 0.038508 (0.070782) 0.086053 / 0.023109 (0.062943) 0.469859 / 0.275898 (0.193961) 0.476142 / 0.323480 (0.152662) 0.006739 / 0.007986 (-0.001247) 0.005077 / 0.004328 (0.000748) 0.078193 / 0.004250 (0.073943) 0.065956 / 0.037052 (0.028904) 0.490323 / 0.258489 (0.231834) 0.497418 / 0.293841 (0.203577) 0.060562 / 0.128546 (-0.067984) 0.016321 / 0.075646 (-0.059325) 0.379703 / 0.419271 (-0.039568) 0.087335 / 0.043533 (0.043802) 0.488240 / 0.255139 (0.233101) 0.497391 / 0.283200 (0.214191) 0.040699 / 0.141683 (-0.100984) 1.778925 / 1.452155 (0.326770) 1.856436 / 1.492716 (0.363720)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.236428 / 0.018006 (0.218422) 0.551950 / 0.000490 (0.551460) 0.007400 / 0.000200 (0.007201) 0.000120 / 0.000054 (0.000066)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.028461 / 0.037411 (-0.008950) 0.093441 / 0.014526 (0.078915) 0.103868 / 0.176557 (-0.072688) 0.176269 / 0.737135 (-0.560867) 0.107760 / 0.296338 (-0.188578)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.593382 / 0.215209 (0.378173) 5.863711 / 2.077655 (3.786057) 2.493777 / 1.504120 (0.989657) 2.088547 / 1.541195 (0.547352) 2.173147 / 1.468490 (0.704656) 0.875661 / 4.584777 (-3.709116) 5.209023 / 3.745712 (1.463310) 4.483261 / 5.269862 (-0.786600) 2.843288 / 4.565676 (-1.722388) 0.098488 / 0.424275 (-0.325787) 0.008371 / 0.007607 (0.000764) 0.668413 / 0.226044 (0.442368) 6.709802 / 2.268929 (4.440873) 3.132453 / 55.444624 (-52.312172) 2.428736 / 6.876477 (-4.447741) 2.560867 / 2.142072 (0.418794) 0.983550 / 4.805227 (-3.821677) 0.207072 / 6.500664 (-6.293592) 0.073786 / 0.075469 (-0.001683)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.625871 / 1.841788 (-0.215917) 23.481015 / 8.074308 (15.406707) 20.556677 / 10.191392 (10.365285) 0.238147 / 0.680424 (-0.442277) 0.029453 / 0.534201 (-0.504748) 0.464589 / 0.579283 (-0.114695) 0.599129 / 0.434364 (0.164765) 0.550146 / 0.540337 (0.009808) 0.794646 / 1.386936 (-0.592290)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.008613 / 0.011353 (-0.002739) 0.004979 / 0.011008 (-0.006030) 0.078095 / 0.038508 (0.039587) 0.080285 / 0.023109 (0.057176) 0.482881 / 0.275898 (0.206983) 0.520442 / 0.323480 (0.196962) 0.006241 / 0.007986 (-0.001744) 0.003964 / 0.004328 (-0.000364) 0.080027 / 0.004250 (0.075777) 0.065209 / 0.037052 (0.028157) 0.476113 / 0.258489 (0.217623) 0.535383 / 0.293841 (0.241542) 0.053084 / 0.128546 (-0.075462) 0.014284 / 0.075646 (-0.061362) 0.083859 / 0.419271 (-0.335413) 0.061024 / 0.043533 (0.017492) 0.477810 / 0.255139 (0.222671) 0.508718 / 0.283200 (0.225518) 0.036602 / 0.141683 (-0.105081) 1.810422 / 1.452155 (0.358267) 1.832833 / 1.492716 (0.340117)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.281443 / 0.018006 (0.263437) 0.568249 / 0.000490 (0.567760) 0.000493 / 0.000200 (0.000293) 0.000077 / 0.000054 (0.000023)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.033302 / 0.037411 (-0.004110) 0.100433 / 0.014526 (0.085907) 0.105465 / 0.176557 (-0.071091) 0.161986 / 0.737135 (-0.575149) 0.115736 / 0.296338 (-0.180603)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.622892 / 0.215209 (0.407683) 6.144361 / 2.077655 (4.066706) 2.849443 / 1.504120 (1.345323) 2.544097 / 1.541195 (1.002902) 2.579859 / 1.468490 (1.111369) 0.826078 / 4.584777 (-3.758699) 5.021808 / 3.745712 (1.276096) 4.694784 / 5.269862 (-0.575077) 2.796263 / 4.565676 (-1.769413) 0.090983 / 0.424275 (-0.333292) 0.008445 / 0.007607 (0.000838) 0.744675 / 0.226044 (0.518631) 7.662989 / 2.268929 (5.394060) 3.665611 / 55.444624 (-51.779013) 2.942836 / 6.876477 (-3.933641) 2.874402 / 2.142072 (0.732329) 1.010097 / 4.805227 (-3.795130) 0.218008 / 6.500664 (-6.282656) 0.087359 / 0.075469 (0.011890)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.655631 / 1.841788 (-0.186157) 23.539596 / 8.074308 (15.465288) 20.909512 / 10.191392 (10.718120) 0.202092 / 0.680424 (-0.478332) 0.029807 / 0.534201 (-0.504394) 0.487591 / 0.579283 (-0.091692) 0.573719 / 0.434364 (0.139355) 0.531168 / 0.540337 (-0.009170) 0.742375 / 1.386936 (-0.644561)

@github-actions
Copy link

github-actions bot commented Jul 7, 2023

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006247 / 0.011353 (-0.005106) 0.003650 / 0.011008 (-0.007358) 0.079655 / 0.038508 (0.041147) 0.060279 / 0.023109 (0.037170) 0.309033 / 0.275898 (0.033135) 0.338479 / 0.323480 (0.014999) 0.004651 / 0.007986 (-0.003335) 0.002849 / 0.004328 (-0.001480) 0.062852 / 0.004250 (0.058602) 0.049230 / 0.037052 (0.012178) 0.312502 / 0.258489 (0.054012) 0.354558 / 0.293841 (0.060717) 0.027497 / 0.128546 (-0.101049) 0.007885 / 0.075646 (-0.067762) 0.260232 / 0.419271 (-0.159040) 0.045459 / 0.043533 (0.001926) 0.311629 / 0.255139 (0.056490) 0.367806 / 0.283200 (0.084606) 0.020875 / 0.141683 (-0.120808) 1.423802 / 1.452155 (-0.028352) 1.497729 / 1.492716 (0.005013)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.185629 / 0.018006 (0.167623) 0.441421 / 0.000490 (0.440931) 0.004847 / 0.000200 (0.004647) 0.000074 / 0.000054 (0.000020)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.022428 / 0.037411 (-0.014984) 0.073375 / 0.014526 (0.058849) 0.083194 / 0.176557 (-0.093363) 0.143984 / 0.737135 (-0.593151) 0.084128 / 0.296338 (-0.212211)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.397220 / 0.215209 (0.182010) 3.954394 / 2.077655 (1.876740) 1.920638 / 1.504120 (0.416518) 1.744284 / 1.541195 (0.203089) 1.802623 / 1.468490 (0.334133) 0.501988 / 4.584777 (-4.082789) 3.096071 / 3.745712 (-0.649642) 4.648267 / 5.269862 (-0.621595) 2.770995 / 4.565676 (-1.794682) 0.057513 / 0.424275 (-0.366762) 0.006315 / 0.007607 (-0.001292) 0.467683 / 0.226044 (0.241639) 4.683959 / 2.268929 (2.415031) 2.384980 / 55.444624 (-53.059645) 2.030894 / 6.876477 (-4.845583) 2.148374 / 2.142072 (0.006302) 0.585142 / 4.805227 (-4.220085) 0.123173 / 6.500664 (-6.377491) 0.059140 / 0.075469 (-0.016329)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.244707 / 1.841788 (-0.597080) 18.176043 / 8.074308 (10.101735) 13.742770 / 10.191392 (3.551378) 0.149692 / 0.680424 (-0.530732) 0.016591 / 0.534201 (-0.517610) 0.342138 / 0.579283 (-0.237145) 0.353931 / 0.434364 (-0.080433) 0.392317 / 0.540337 (-0.148020) 0.524011 / 1.386936 (-0.862925)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005937 / 0.011353 (-0.005416) 0.003609 / 0.011008 (-0.007399) 0.061729 / 0.038508 (0.023221) 0.057844 / 0.023109 (0.034735) 0.418051 / 0.275898 (0.142153) 0.453014 / 0.323480 (0.129534) 0.004530 / 0.007986 (-0.003456) 0.002861 / 0.004328 (-0.001468) 0.062236 / 0.004250 (0.057986) 0.048612 / 0.037052 (0.011560) 0.418487 / 0.258489 (0.159998) 0.455114 / 0.293841 (0.161273) 0.027419 / 0.128546 (-0.101127) 0.007919 / 0.075646 (-0.067728) 0.066940 / 0.419271 (-0.352331) 0.041816 / 0.043533 (-0.001717) 0.419788 / 0.255139 (0.164649) 0.439682 / 0.283200 (0.156483) 0.020902 / 0.141683 (-0.120781) 1.473993 / 1.452155 (0.021838) 1.532438 / 1.492716 (0.039722)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.228766 / 0.018006 (0.210760) 0.412189 / 0.000490 (0.411699) 0.000371 / 0.000200 (0.000171) 0.000054 / 0.000054 (-0.000000)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.026139 / 0.037411 (-0.011272) 0.076626 / 0.014526 (0.062100) 0.088262 / 0.176557 (-0.088295) 0.143096 / 0.737135 (-0.594039) 0.089642 / 0.296338 (-0.206696)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.423030 / 0.215209 (0.207821) 4.218333 / 2.077655 (2.140679) 2.280943 / 1.504120 (0.776823) 2.051746 / 1.541195 (0.510551) 2.101085 / 1.468490 (0.632595) 0.495860 / 4.584777 (-4.088917) 3.108065 / 3.745712 (-0.637647) 2.944188 / 5.269862 (-2.325673) 1.833693 / 4.565676 (-2.731984) 0.057509 / 0.424275 (-0.366766) 0.006406 / 0.007607 (-0.001201) 0.497208 / 0.226044 (0.271164) 4.974972 / 2.268929 (2.706044) 2.786639 / 55.444624 (-52.657985) 2.423815 / 6.876477 (-4.452662) 2.446377 / 2.142072 (0.304305) 0.584521 / 4.805227 (-4.220706) 0.124129 / 6.500664 (-6.376535) 0.061373 / 0.075469 (-0.014096)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.307076 / 1.841788 (-0.534711) 18.443873 / 8.074308 (10.369565) 13.835730 / 10.191392 (3.644338) 0.159795 / 0.680424 (-0.520629) 0.016643 / 0.534201 (-0.517558) 0.334300 / 0.579283 (-0.244983) 0.347136 / 0.434364 (-0.087228) 0.394633 / 0.540337 (-0.145704) 0.552445 / 1.386936 (-0.834491)

@mariosasko mariosasko merged commit b65660b into main Jul 10, 2023
@mariosasko mariosasko deleted the deprecate-task-api branch July 10, 2023 12:24
@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.007273 / 0.011353 (-0.004080) 0.004704 / 0.011008 (-0.006304) 0.105857 / 0.038508 (0.067349) 0.062493 / 0.023109 (0.039384) 0.325704 / 0.275898 (0.049806) 0.355795 / 0.323480 (0.032315) 0.005552 / 0.007986 (-0.002433) 0.003543 / 0.004328 (-0.000785) 0.068098 / 0.004250 (0.063848) 0.049563 / 0.037052 (0.012511) 0.362956 / 0.258489 (0.104467) 0.376047 / 0.293841 (0.082206) 0.039272 / 0.128546 (-0.089275) 0.011521 / 0.075646 (-0.064125) 0.291899 / 0.419271 (-0.127373) 0.056916 / 0.043533 (0.013383) 0.365352 / 0.255139 (0.110213) 0.357251 / 0.283200 (0.074051) 0.031670 / 0.141683 (-0.110013) 1.533294 / 1.452155 (0.081140) 1.566580 / 1.492716 (0.073864)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.219812 / 0.018006 (0.201805) 0.499808 / 0.000490 (0.499318) 0.000343 / 0.000200 (0.000143) 0.000066 / 0.000054 (0.000011)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.024011 / 0.037411 (-0.013400) 0.079686 / 0.014526 (0.065161) 0.087925 / 0.176557 (-0.088631) 0.149065 / 0.737135 (-0.588071) 0.088514 / 0.296338 (-0.207824)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.495003 / 0.215209 (0.279794) 5.106371 / 2.077655 (3.028717) 2.285497 / 1.504120 (0.781377) 2.056052 / 1.541195 (0.514858) 2.024913 / 1.468490 (0.556423) 0.726048 / 4.584777 (-3.858729) 4.873945 / 3.745712 (1.128233) 7.488671 / 5.269862 (2.218809) 4.361208 / 4.565676 (-0.204469) 0.089014 / 0.424275 (-0.335261) 0.007178 / 0.007607 (-0.000429) 0.633669 / 0.226044 (0.407625) 6.328154 / 2.268929 (4.059226) 3.071598 / 55.444624 (-52.373026) 2.416077 / 6.876477 (-4.460399) 2.431033 / 2.142072 (0.288961) 0.918167 / 4.805227 (-3.887060) 0.193829 / 6.500664 (-6.306836) 0.073446 / 0.075469 (-0.002023)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.344994 / 1.841788 (-0.496793) 19.911699 / 8.074308 (11.837391) 17.182697 / 10.191392 (6.991305) 0.216932 / 0.680424 (-0.463492) 0.025415 / 0.534201 (-0.508786) 0.416806 / 0.579283 (-0.162477) 0.524934 / 0.434364 (0.090570) 0.510783 / 0.540337 (-0.029554) 0.687856 / 1.386936 (-0.699081)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.008469 / 0.011353 (-0.002884) 0.003797 / 0.011008 (-0.007211) 0.067276 / 0.038508 (0.028768) 0.066825 / 0.023109 (0.043716) 0.394976 / 0.275898 (0.119078) 0.432563 / 0.323480 (0.109083) 0.006003 / 0.007986 (-0.001982) 0.003399 / 0.004328 (-0.000930) 0.070899 / 0.004250 (0.066649) 0.050940 / 0.037052 (0.013887) 0.378291 / 0.258489 (0.119802) 0.429889 / 0.293841 (0.136048) 0.043245 / 0.128546 (-0.085302) 0.012182 / 0.075646 (-0.063465) 0.074560 / 0.419271 (-0.344711) 0.065290 / 0.043533 (0.021757) 0.371209 / 0.255139 (0.116070) 0.389731 / 0.283200 (0.106532) 0.045729 / 0.141683 (-0.095954) 1.451785 / 1.452155 (-0.000370) 1.598539 / 1.492716 (0.105822)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.261357 / 0.018006 (0.243351) 0.520142 / 0.000490 (0.519653) 0.008305 / 0.000200 (0.008105) 0.000089 / 0.000054 (0.000034)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.026492 / 0.037411 (-0.010919) 0.082430 / 0.014526 (0.067904) 0.095979 / 0.176557 (-0.080578) 0.151752 / 0.737135 (-0.585383) 0.090086 / 0.296338 (-0.206252)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.535967 / 0.215209 (0.320758) 5.228605 / 2.077655 (3.150950) 2.395078 / 1.504120 (0.890959) 2.185500 / 1.541195 (0.644306) 2.219456 / 1.468490 (0.750966) 0.764794 / 4.584777 (-3.819983) 4.796617 / 3.745712 (1.050905) 4.143450 / 5.269862 (-1.126411) 2.527391 / 4.565676 (-2.038286) 0.081418 / 0.424275 (-0.342857) 0.007170 / 0.007607 (-0.000437) 0.706071 / 0.226044 (0.480026) 6.501060 / 2.268929 (4.232131) 3.176315 / 55.444624 (-52.268309) 2.443245 / 6.876477 (-4.433232) 2.517832 / 2.142072 (0.375759) 0.916254 / 4.805227 (-3.888973) 0.184282 / 6.500664 (-6.316382) 0.062613 / 0.075469 (-0.012857)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.444283 / 1.841788 (-0.397504) 20.227311 / 8.074308 (12.153003) 17.512856 / 10.191392 (7.321464) 0.219556 / 0.680424 (-0.460868) 0.024705 / 0.534201 (-0.509496) 0.423215 / 0.579283 (-0.156068) 0.513103 / 0.434364 (0.078739) 0.473853 / 0.540337 (-0.066485) 0.738165 / 1.386936 (-0.648771)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants