Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Make prepare_split more robust if errors in metadata dataset_info splits #5901

Merged
merged 1 commit into from
Jun 1, 2023

Conversation

albertvillanova
Copy link
Member

@albertvillanova albertvillanova commented May 26, 2023

This PR uses split_generator.split_info as default value for split_info if any exception is raised while trying to get split_generator.name from self.info.splits (this may happen if there is any error in the metadata dataset_info splits).

Please note that split_info is only used by the logger.

Fix #5895 if passed verification_mode="no_checks":

ds = load_dataset(
    "ArmelR/stack-exchange-instruction", 
    data_dir="data/finetune", 
    split="train", 
    verification_mode="no_checks", 
    revision="c609f1caade5cfbf3b9fe9cfa17d7cb000b457bd",
)

@HuggingFaceDocBuilderDev
Copy link

HuggingFaceDocBuilderDev commented May 26, 2023

The documentation is not available anymore as the PR was closed or merged.

@albertvillanova albertvillanova changed the title Make prepare_split more robust if errors in metada dataset_info splits Make prepare_split more robust if errors in metadata dataset_info splits May 26, 2023
@albertvillanova albertvillanova merged commit 074925b into huggingface:main Jun 1, 2023
@albertvillanova albertvillanova deleted the fix-5895 branch June 1, 2023 13:39
@github-actions
Copy link

github-actions bot commented Jun 1, 2023

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.008809 / 0.011353 (-0.002544) 0.005641 / 0.011008 (-0.005367) 0.124986 / 0.038508 (0.086477) 0.037311 / 0.023109 (0.014202) 0.388915 / 0.275898 (0.113017) 0.430123 / 0.323480 (0.106643) 0.007447 / 0.007986 (-0.000538) 0.009593 / 0.004328 (0.005264) 0.099148 / 0.004250 (0.094898) 0.052393 / 0.037052 (0.015341) 0.399779 / 0.258489 (0.141290) 0.439109 / 0.293841 (0.145268) 0.043409 / 0.128546 (-0.085137) 0.016286 / 0.075646 (-0.059360) 0.431198 / 0.419271 (0.011927) 0.064932 / 0.043533 (0.021400) 0.390650 / 0.255139 (0.135511) 0.432883 / 0.283200 (0.149684) 0.110978 / 0.141683 (-0.030705) 1.796121 / 1.452155 (0.343967) 1.960097 / 1.492716 (0.467381)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.286292 / 0.018006 (0.268286) 0.659495 / 0.000490 (0.659005) 0.008294 / 0.000200 (0.008094) 0.000485 / 0.000054 (0.000431)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.029325 / 0.037411 (-0.008086) 0.125454 / 0.014526 (0.110928) 0.136459 / 0.176557 (-0.040097) 0.221075 / 0.737135 (-0.516060) 0.140281 / 0.296338 (-0.156058)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.602401 / 0.215209 (0.387192) 6.124553 / 2.077655 (4.046898) 2.453141 / 1.504120 (0.949021) 2.038611 / 1.541195 (0.497416) 2.073611 / 1.468490 (0.605121) 0.938040 / 4.584777 (-3.646737) 5.755972 / 3.745712 (2.010260) 4.450935 / 5.269862 (-0.818926) 2.337219 / 4.565676 (-2.228457) 0.107118 / 0.424275 (-0.317157) 0.015201 / 0.007607 (0.007594) 0.785833 / 0.226044 (0.559788) 7.732984 / 2.268929 (5.464055) 3.236892 / 55.444624 (-52.207733) 2.696402 / 6.876477 (-4.180074) 2.805036 / 2.142072 (0.662964) 1.108612 / 4.805227 (-3.696616) 0.221067 / 6.500664 (-6.279597) 0.085538 / 0.075469 (0.010068)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.600311 / 1.841788 (-0.241476) 18.528118 / 8.074308 (10.453810) 21.107199 / 10.191392 (10.915807) 0.219489 / 0.680424 (-0.460934) 0.028927 / 0.534201 (-0.505274) 0.503446 / 0.579283 (-0.075837) 0.619833 / 0.434364 (0.185469) 0.582454 / 0.540337 (0.042117) 0.709154 / 1.386936 (-0.677782)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.008516 / 0.011353 (-0.002837) 0.006090 / 0.011008 (-0.004918) 0.104574 / 0.038508 (0.066066) 0.042676 / 0.023109 (0.019566) 0.458623 / 0.275898 (0.182725) 0.568479 / 0.323480 (0.244999) 0.008374 / 0.007986 (0.000389) 0.004677 / 0.004328 (0.000349) 0.105946 / 0.004250 (0.101695) 0.055256 / 0.037052 (0.018204) 0.511036 / 0.258489 (0.252547) 0.598383 / 0.293841 (0.304542) 0.043612 / 0.128546 (-0.084934) 0.014707 / 0.075646 (-0.060940) 0.116350 / 0.419271 (-0.302921) 0.061413 / 0.043533 (0.017880) 0.477785 / 0.255139 (0.222646) 0.542643 / 0.283200 (0.259443) 0.120431 / 0.141683 (-0.021252) 1.994083 / 1.452155 (0.541928) 2.100600 / 1.492716 (0.607883)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.298480 / 0.018006 (0.280474) 0.601921 / 0.000490 (0.601432) 0.000445 / 0.000200 (0.000245) 0.000086 / 0.000054 (0.000032)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.034784 / 0.037411 (-0.002627) 0.133555 / 0.014526 (0.119029) 0.138541 / 0.176557 (-0.038015) 0.203114 / 0.737135 (-0.534021) 0.153477 / 0.296338 (-0.142861)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.780484 / 0.215209 (0.565275) 7.150876 / 2.077655 (5.073222) 3.168590 / 1.504120 (1.664470) 2.698746 / 1.541195 (1.157552) 2.695678 / 1.468490 (1.227188) 1.037706 / 4.584777 (-3.547071) 5.672631 / 3.745712 (1.926918) 2.798137 / 5.269862 (-2.471725) 1.738588 / 4.565676 (-2.827088) 0.111160 / 0.424275 (-0.313115) 0.013878 / 0.007607 (0.006271) 0.800191 / 0.226044 (0.574146) 8.546676 / 2.268929 (6.277748) 4.116852 / 55.444624 (-51.327773) 3.331271 / 6.876477 (-3.545206) 3.307410 / 2.142072 (1.165337) 1.191019 / 4.805227 (-3.614208) 0.248953 / 6.500664 (-6.251711) 0.086632 / 0.075469 (0.011162)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.795057 / 1.841788 (-0.046730) 18.038785 / 8.074308 (9.964476) 21.865566 / 10.191392 (11.674174) 0.211058 / 0.680424 (-0.469366) 0.026956 / 0.534201 (-0.507245) 0.518855 / 0.579283 (-0.060428) 0.618105 / 0.434364 (0.183741) 0.569227 / 0.540337 (0.028889) 0.705431 / 1.386936 (-0.681505)

@github-actions
Copy link

github-actions bot commented Jun 2, 2023

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.008900 / 0.011353 (-0.002453) 0.005726 / 0.011008 (-0.005283) 0.131747 / 0.038508 (0.093239) 0.040585 / 0.023109 (0.017476) 0.420531 / 0.275898 (0.144633) 0.459430 / 0.323480 (0.135950) 0.007642 / 0.007986 (-0.000344) 0.006750 / 0.004328 (0.002421) 0.099147 / 0.004250 (0.094897) 0.055852 / 0.037052 (0.018799) 0.423653 / 0.258489 (0.165164) 0.453304 / 0.293841 (0.159463) 0.045247 / 0.128546 (-0.083300) 0.016034 / 0.075646 (-0.059612) 0.443115 / 0.419271 (0.023843) 0.078853 / 0.043533 (0.035320) 0.417508 / 0.255139 (0.162369) 0.440936 / 0.283200 (0.157736) 0.115603 / 0.141683 (-0.026080) 1.844610 / 1.452155 (0.392456) 1.998497 / 1.492716 (0.505781)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.272622 / 0.018006 (0.254616) 0.598045 / 0.000490 (0.597556) 0.007088 / 0.000200 (0.006888) 0.000159 / 0.000054 (0.000105)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.032976 / 0.037411 (-0.004436) 0.143970 / 0.014526 (0.129444) 0.142172 / 0.176557 (-0.034384) 0.216747 / 0.737135 (-0.520389) 0.146004 / 0.296338 (-0.150334)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.687507 / 0.215209 (0.472298) 6.549524 / 2.077655 (4.471870) 2.924142 / 1.504120 (1.420022) 2.504471 / 1.541195 (0.963277) 2.496280 / 1.468490 (1.027790) 0.959054 / 4.584777 (-3.625723) 5.851742 / 3.745712 (2.106030) 4.983357 / 5.269862 (-0.286504) 2.627403 / 4.565676 (-1.938274) 0.112955 / 0.424275 (-0.311320) 0.016206 / 0.007607 (0.008599) 0.819158 / 0.226044 (0.593114) 8.416949 / 2.268929 (6.148020) 3.776765 / 55.444624 (-51.667859) 3.002397 / 6.876477 (-3.874080) 3.158852 / 2.142072 (1.016779) 1.197099 / 4.805227 (-3.608129) 0.280654 / 6.500664 (-6.220010) 0.099471 / 0.075469 (0.024002)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.687007 / 1.841788 (-0.154781) 19.411976 / 8.074308 (11.337668) 22.053482 / 10.191392 (11.862090) 0.228038 / 0.680424 (-0.452386) 0.028226 / 0.534201 (-0.505975) 0.527695 / 0.579283 (-0.051588) 0.635911 / 0.434364 (0.201547) 0.618205 / 0.540337 (0.077868) 0.735164 / 1.386936 (-0.651772)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.009450 / 0.011353 (-0.001903) 0.006566 / 0.011008 (-0.004442) 0.108919 / 0.038508 (0.070411) 0.050010 / 0.023109 (0.026900) 0.505168 / 0.275898 (0.229270) 0.552190 / 0.323480 (0.228710) 0.007569 / 0.007986 (-0.000417) 0.006807 / 0.004328 (0.002478) 0.116621 / 0.004250 (0.112371) 0.060374 / 0.037052 (0.023321) 0.515165 / 0.258489 (0.256676) 0.572125 / 0.293841 (0.278284) 0.046561 / 0.128546 (-0.081986) 0.016159 / 0.075646 (-0.059487) 0.114568 / 0.419271 (-0.304704) 0.064689 / 0.043533 (0.021157) 0.497870 / 0.255139 (0.242731) 0.567332 / 0.283200 (0.284132) 0.126254 / 0.141683 (-0.015429) 1.954074 / 1.452155 (0.501919) 2.057682 / 1.492716 (0.564966)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.013857 / 0.018006 (-0.004149) 0.601561 / 0.000490 (0.601071) 0.002897 / 0.000200 (0.002697) 0.000108 / 0.000054 (0.000053)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.038480 / 0.037411 (0.001069) 0.142480 / 0.014526 (0.127954) 0.160479 / 0.176557 (-0.016077) 0.217942 / 0.737135 (-0.519194) 0.159908 / 0.296338 (-0.136431)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.697926 / 0.215209 (0.482717) 6.869754 / 2.077655 (4.792100) 3.125463 / 1.504120 (1.621343) 2.729123 / 1.541195 (1.187928) 2.855747 / 1.468490 (1.387257) 1.015345 / 4.584777 (-3.569432) 5.839176 / 3.745712 (2.093463) 5.019678 / 5.269862 (-0.250184) 2.080489 / 4.565676 (-2.485187) 0.118884 / 0.424275 (-0.305391) 0.021381 / 0.007607 (0.013774) 0.877847 / 0.226044 (0.651803) 8.714561 / 2.268929 (6.445633) 3.933399 / 55.444624 (-51.511226) 3.281809 / 6.876477 (-3.594668) 3.330342 / 2.142072 (1.188269) 1.235005 / 4.805227 (-3.570222) 0.239686 / 6.500664 (-6.260978) 0.093546 / 0.075469 (0.018077)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.787916 / 1.841788 (-0.053872) 20.094828 / 8.074308 (12.020520) 22.902101 / 10.191392 (12.710709) 0.249315 / 0.680424 (-0.431109) 0.028058 / 0.534201 (-0.506143) 0.524960 / 0.579283 (-0.054323) 0.643881 / 0.434364 (0.209517) 0.621203 / 0.540337 (0.080866) 0.723337 / 1.386936 (-0.663599)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

The dir name and split strings are confused when loading ArmelR/stack-exchange-instruction dataset
2 participants