Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Filter unsupported extensions #5972

Merged
merged 4 commits into from
Jun 22, 2023
Merged

Filter unsupported extensions #5972

merged 4 commits into from
Jun 22, 2023

Conversation

lhoestq
Copy link
Member

@lhoestq lhoestq commented Jun 21, 2023

I used a regex to filter the data files based on their extension for packaged builders.

I tried and a regex is 10x faster that using in to check if the extension is in the list of supported extensions.

Supersedes #5850

Close #5849

I also did a small change to favor the parquet module in case of a draw in the extension counter.

lhoestq and others added 2 commits June 21, 2023 17:38
Co-authored-by: Albert Villanova del Moral <8515462+albertvillanova@users.noreply.github.com>
@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006983 / 0.011353 (-0.004369) 0.004473 / 0.011008 (-0.006535) 0.105158 / 0.038508 (0.066650) 0.048973 / 0.023109 (0.025864) 0.358771 / 0.275898 (0.082873) 0.432389 / 0.323480 (0.108909) 0.005689 / 0.007986 (-0.002297) 0.003584 / 0.004328 (-0.000744) 0.080852 / 0.004250 (0.076601) 0.066133 / 0.037052 (0.029081) 0.370981 / 0.258489 (0.112492) 0.406942 / 0.293841 (0.113101) 0.032123 / 0.128546 (-0.096424) 0.009313 / 0.075646 (-0.066333) 0.355220 / 0.419271 (-0.064051) 0.055768 / 0.043533 (0.012235) 0.370545 / 0.255139 (0.115406) 0.375619 / 0.283200 (0.092419) 0.024258 / 0.141683 (-0.117425) 1.559073 / 1.452155 (0.106918) 1.616520 / 1.492716 (0.123804)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.277893 / 0.018006 (0.259887) 0.535447 / 0.000490 (0.534957) 0.004877 / 0.000200 (0.004677) 0.000092 / 0.000054 (0.000037)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.029444 / 0.037411 (-0.007968) 0.114366 / 0.014526 (0.099841) 0.130957 / 0.176557 (-0.045599) 0.189604 / 0.737135 (-0.547531) 0.131682 / 0.296338 (-0.164656)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.412315 / 0.215209 (0.197106) 4.093879 / 2.077655 (2.016225) 1.856169 / 1.504120 (0.352050) 1.655358 / 1.541195 (0.114164) 1.758190 / 1.468490 (0.289699) 0.545829 / 4.584777 (-4.038948) 3.871436 / 3.745712 (0.125724) 1.938244 / 5.269862 (-3.331618) 1.122727 / 4.565676 (-3.442950) 0.067107 / 0.424275 (-0.357168) 0.012012 / 0.007607 (0.004405) 0.518868 / 0.226044 (0.292824) 5.235081 / 2.268929 (2.966153) 2.335115 / 55.444624 (-53.109509) 2.013074 / 6.876477 (-4.863402) 2.219808 / 2.142072 (0.077735) 0.674602 / 4.805227 (-4.130626) 0.147051 / 6.500664 (-6.353613) 0.068444 / 0.075469 (-0.007025)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.245600 / 1.841788 (-0.596188) 15.537727 / 8.074308 (7.463419) 15.074300 / 10.191392 (4.882908) 0.194217 / 0.680424 (-0.486207) 0.018536 / 0.534201 (-0.515665) 0.437085 / 0.579283 (-0.142198) 0.441123 / 0.434364 (0.006759) 0.530681 / 0.540337 (-0.009657) 0.649154 / 1.386936 (-0.737782)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.007243 / 0.011353 (-0.004110) 0.004688 / 0.011008 (-0.006320) 0.079809 / 0.038508 (0.041301) 0.046915 / 0.023109 (0.023805) 0.415144 / 0.275898 (0.139246) 0.474867 / 0.323480 (0.151388) 0.004550 / 0.007986 (-0.003435) 0.004585 / 0.004328 (0.000257) 0.080837 / 0.004250 (0.076587) 0.061667 / 0.037052 (0.024614) 0.411321 / 0.258489 (0.152832) 0.464195 / 0.293841 (0.170354) 0.032510 / 0.128546 (-0.096037) 0.009306 / 0.075646 (-0.066340) 0.086637 / 0.419271 (-0.332635) 0.053335 / 0.043533 (0.009802) 0.402302 / 0.255139 (0.147163) 0.424864 / 0.283200 (0.141664) 0.026573 / 0.141683 (-0.115110) 1.566793 / 1.452155 (0.114639) 1.628118 / 1.492716 (0.135401)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.317802 / 0.018006 (0.299796) 0.544593 / 0.000490 (0.544103) 0.005690 / 0.000200 (0.005490) 0.000107 / 0.000054 (0.000053)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.033015 / 0.037411 (-0.004397) 0.121940 / 0.014526 (0.107414) 0.132920 / 0.176557 (-0.043637) 0.191481 / 0.737135 (-0.545655) 0.139139 / 0.296338 (-0.157199)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.460382 / 0.215209 (0.245173) 4.610046 / 2.077655 (2.532392) 2.296573 / 1.504120 (0.792453) 2.099735 / 1.541195 (0.558540) 2.213913 / 1.468490 (0.745423) 0.544871 / 4.584777 (-4.039906) 3.814174 / 3.745712 (0.068462) 3.246397 / 5.269862 (-2.023464) 1.480236 / 4.565676 (-3.085440) 0.068464 / 0.424275 (-0.355811) 0.012651 / 0.007607 (0.005043) 0.564989 / 0.226044 (0.338944) 5.639188 / 2.268929 (3.370259) 2.827601 / 55.444624 (-52.617023) 2.473743 / 6.876477 (-4.402734) 2.567413 / 2.142072 (0.425340) 0.674351 / 4.805227 (-4.130876) 0.146248 / 6.500664 (-6.354416) 0.067553 / 0.075469 (-0.007916)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.346703 / 1.841788 (-0.495085) 16.494787 / 8.074308 (8.420479) 15.179487 / 10.191392 (4.988095) 0.181864 / 0.680424 (-0.498560) 0.018857 / 0.534201 (-0.515344) 0.437787 / 0.579283 (-0.141496) 0.431770 / 0.434364 (-0.002594) 0.507116 / 0.540337 (-0.033221) 0.608899 / 1.386936 (-0.778037)

@HuggingFaceDocBuilderDev
Copy link

HuggingFaceDocBuilderDev commented Jun 21, 2023

The documentation is not available anymore as the PR was closed or merged.

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005963 / 0.011353 (-0.005390) 0.003743 / 0.011008 (-0.007265) 0.098519 / 0.038508 (0.060011) 0.037392 / 0.023109 (0.014283) 0.322706 / 0.275898 (0.046808) 0.380032 / 0.323480 (0.056552) 0.004694 / 0.007986 (-0.003292) 0.002897 / 0.004328 (-0.001432) 0.078664 / 0.004250 (0.074414) 0.052646 / 0.037052 (0.015594) 0.335523 / 0.258489 (0.077034) 0.375464 / 0.293841 (0.081623) 0.027537 / 0.128546 (-0.101010) 0.008452 / 0.075646 (-0.067194) 0.313844 / 0.419271 (-0.105427) 0.047368 / 0.043533 (0.003835) 0.313833 / 0.255139 (0.058694) 0.342284 / 0.283200 (0.059085) 0.021136 / 0.141683 (-0.120547) 1.544764 / 1.452155 (0.092610) 1.563850 / 1.492716 (0.071134)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.188609 / 0.018006 (0.170603) 0.421686 / 0.000490 (0.421196) 0.003336 / 0.000200 (0.003136) 0.000077 / 0.000054 (0.000023)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.023678 / 0.037411 (-0.013733) 0.099191 / 0.014526 (0.084665) 0.105819 / 0.176557 (-0.070738) 0.169654 / 0.737135 (-0.567481) 0.110240 / 0.296338 (-0.186099)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.425497 / 0.215209 (0.210288) 4.237165 / 2.077655 (2.159510) 1.902953 / 1.504120 (0.398833) 1.699012 / 1.541195 (0.157818) 1.751107 / 1.468490 (0.282617) 0.563326 / 4.584777 (-4.021451) 3.394189 / 3.745712 (-0.351523) 2.706129 / 5.269862 (-2.563732) 1.361522 / 4.565676 (-3.204155) 0.067776 / 0.424275 (-0.356499) 0.010959 / 0.007607 (0.003352) 0.530905 / 0.226044 (0.304860) 5.322467 / 2.268929 (3.053538) 2.384356 / 55.444624 (-53.060269) 2.044196 / 6.876477 (-4.832281) 2.119837 / 2.142072 (-0.022235) 0.682236 / 4.805227 (-4.122991) 0.136921 / 6.500664 (-6.363743) 0.066784 / 0.075469 (-0.008685)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.210642 / 1.841788 (-0.631146) 13.804572 / 8.074308 (5.730264) 13.309229 / 10.191392 (3.117837) 0.154356 / 0.680424 (-0.526068) 0.016833 / 0.534201 (-0.517368) 0.366503 / 0.579283 (-0.212780) 0.385201 / 0.434364 (-0.049163) 0.426713 / 0.540337 (-0.113624) 0.516795 / 1.386936 (-0.870141)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006144 / 0.011353 (-0.005209) 0.003723 / 0.011008 (-0.007285) 0.077427 / 0.038508 (0.038919) 0.037636 / 0.023109 (0.014527) 0.375048 / 0.275898 (0.099150) 0.442254 / 0.323480 (0.118774) 0.003506 / 0.007986 (-0.004480) 0.003751 / 0.004328 (-0.000577) 0.076771 / 0.004250 (0.072521) 0.047915 / 0.037052 (0.010862) 0.378918 / 0.258489 (0.120429) 0.435300 / 0.293841 (0.141459) 0.028317 / 0.128546 (-0.100230) 0.008413 / 0.075646 (-0.067233) 0.082774 / 0.419271 (-0.336497) 0.043211 / 0.043533 (-0.000321) 0.362022 / 0.255139 (0.106883) 0.404928 / 0.283200 (0.121728) 0.020692 / 0.141683 (-0.120991) 1.527303 / 1.452155 (0.075148) 1.596091 / 1.492716 (0.103375)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.225537 / 0.018006 (0.207530) 0.399901 / 0.000490 (0.399412) 0.000424 / 0.000200 (0.000224) 0.000058 / 0.000054 (0.000004)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.026483 / 0.037411 (-0.010928) 0.104373 / 0.014526 (0.089847) 0.111271 / 0.176557 (-0.065286) 0.163872 / 0.737135 (-0.573264) 0.113991 / 0.296338 (-0.182347)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.456484 / 0.215209 (0.241275) 4.572652 / 2.077655 (2.494998) 2.374908 / 1.504120 (0.870788) 2.207855 / 1.541195 (0.666661) 2.260009 / 1.468490 (0.791519) 0.562678 / 4.584777 (-4.022099) 3.441778 / 3.745712 (-0.303934) 1.729006 / 5.269862 (-3.540855) 1.024937 / 4.565676 (-3.540739) 0.068707 / 0.424275 (-0.355568) 0.011334 / 0.007607 (0.003727) 0.564293 / 0.226044 (0.338248) 5.638367 / 2.268929 (3.369438) 2.665654 / 55.444624 (-52.778970) 2.320033 / 6.876477 (-4.556444) 2.328706 / 2.142072 (0.186634) 0.677433 / 4.805227 (-4.127794) 0.137190 / 6.500664 (-6.363474) 0.068585 / 0.075469 (-0.006885)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.312476 / 1.841788 (-0.529312) 14.206685 / 8.074308 (6.132377) 14.217928 / 10.191392 (4.026536) 0.143416 / 0.680424 (-0.537007) 0.016647 / 0.534201 (-0.517554) 0.361228 / 0.579283 (-0.218055) 0.396185 / 0.434364 (-0.038178) 0.423275 / 0.540337 (-0.117063) 0.512966 / 1.386936 (-0.873970)

@lhoestq lhoestq marked this pull request as ready for review June 21, 2023 17:20
@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.008913 / 0.011353 (-0.002440) 0.005142 / 0.011008 (-0.005866) 0.133958 / 0.038508 (0.095449) 0.049180 / 0.023109 (0.026071) 0.389169 / 0.275898 (0.113270) 0.481513 / 0.323480 (0.158033) 0.006555 / 0.007986 (-0.001430) 0.003806 / 0.004328 (-0.000522) 0.102056 / 0.004250 (0.097806) 0.083259 / 0.037052 (0.046207) 0.392536 / 0.258489 (0.134047) 0.447503 / 0.293841 (0.153662) 0.047472 / 0.128546 (-0.081074) 0.014748 / 0.075646 (-0.060899) 0.475619 / 0.419271 (0.056348) 0.107306 / 0.043533 (0.063773) 0.421942 / 0.255139 (0.166803) 0.419736 / 0.283200 (0.136536) 0.044195 / 0.141683 (-0.097488) 1.793840 / 1.452155 (0.341686) 1.960204 / 1.492716 (0.467488)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.252046 / 0.018006 (0.234040) 0.627725 / 0.000490 (0.627236) 0.007435 / 0.000200 (0.007235) 0.000526 / 0.000054 (0.000472)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.034656 / 0.037411 (-0.002755) 0.114534 / 0.014526 (0.100008) 0.135804 / 0.176557 (-0.040753) 0.209309 / 0.737135 (-0.527826) 0.140369 / 0.296338 (-0.155969)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.636736 / 0.215209 (0.421527) 6.039985 / 2.077655 (3.962330) 2.640141 / 1.504120 (1.136021) 2.284492 / 1.541195 (0.743297) 2.324956 / 1.468490 (0.856466) 0.934499 / 4.584777 (-3.650278) 5.673415 / 3.745712 (1.927703) 5.184584 / 5.269862 (-0.085278) 2.661911 / 4.565676 (-1.903766) 0.150420 / 0.424275 (-0.273855) 0.015655 / 0.007607 (0.008048) 0.748290 / 0.226044 (0.522246) 7.579755 / 2.268929 (5.310827) 3.346732 / 55.444624 (-52.097892) 2.708212 / 6.876477 (-4.168264) 2.682423 / 2.142072 (0.540351) 1.170389 / 4.805227 (-3.634838) 0.215775 / 6.500664 (-6.284889) 0.076360 / 0.075469 (0.000891)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.516794 / 1.841788 (-0.324993) 18.709117 / 8.074308 (10.634809) 22.492542 / 10.191392 (12.301150) 0.237978 / 0.680424 (-0.442446) 0.027828 / 0.534201 (-0.506373) 0.499968 / 0.579283 (-0.079315) 0.645899 / 0.434364 (0.211535) 0.548599 / 0.540337 (0.008262) 0.675428 / 1.386936 (-0.711508)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.008469 / 0.011353 (-0.002884) 0.005420 / 0.011008 (-0.005589) 0.093340 / 0.038508 (0.054832) 0.045896 / 0.023109 (0.022786) 0.533267 / 0.275898 (0.257369) 0.596034 / 0.323480 (0.272555) 0.004816 / 0.007986 (-0.003170) 0.004379 / 0.004328 (0.000051) 0.096356 / 0.004250 (0.092106) 0.058339 / 0.037052 (0.021287) 0.574464 / 0.258489 (0.315975) 0.649301 / 0.293841 (0.355461) 0.047599 / 0.128546 (-0.080947) 0.013759 / 0.075646 (-0.061887) 0.104672 / 0.419271 (-0.314599) 0.061658 / 0.043533 (0.018125) 0.560956 / 0.255139 (0.305817) 0.585328 / 0.283200 (0.302128) 0.034137 / 0.141683 (-0.107546) 1.844528 / 1.452155 (0.392373) 1.971398 / 1.492716 (0.478682)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.278666 / 0.018006 (0.260660) 0.577342 / 0.000490 (0.576853) 0.005496 / 0.000200 (0.005296) 0.000131 / 0.000054 (0.000076)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.029863 / 0.037411 (-0.007549) 0.161703 / 0.014526 (0.147177) 0.132279 / 0.176557 (-0.044277) 0.227345 / 0.737135 (-0.509791) 0.138047 / 0.296338 (-0.158291)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.651535 / 0.215209 (0.436326) 7.077949 / 2.077655 (5.000295) 2.926990 / 1.504120 (1.422871) 2.598872 / 1.541195 (1.057678) 2.614192 / 1.468490 (1.145702) 0.913845 / 4.584777 (-3.670932) 5.704301 / 3.745712 (1.958589) 2.796914 / 5.269862 (-2.472948) 1.836096 / 4.565676 (-2.729580) 0.106294 / 0.424275 (-0.317981) 0.012705 / 0.007607 (0.005098) 0.836336 / 0.226044 (0.610291) 8.234079 / 2.268929 (5.965150) 3.836410 / 55.444624 (-51.608215) 3.116752 / 6.876477 (-3.759724) 3.154258 / 2.142072 (1.012186) 1.195794 / 4.805227 (-3.609434) 0.240491 / 6.500664 (-6.260173) 0.087913 / 0.075469 (0.012444)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.724723 / 1.841788 (-0.117064) 19.492194 / 8.074308 (11.417885) 21.443341 / 10.191392 (11.251949) 0.245819 / 0.680424 (-0.434605) 0.027024 / 0.534201 (-0.507177) 0.481071 / 0.579283 (-0.098212) 0.596359 / 0.434364 (0.161995) 0.646462 / 0.540337 (0.106124) 0.706380 / 1.386936 (-0.680556)

Copy link
Collaborator

@mariosasko mariosasko left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Nice! One nit:

Comment on lines +755 to +762
return DataFilesList(
[
data_file
for data_file in self
if pattern.match(data_file.name if isinstance(data_file, Path) else data_file)
],
origin_metadata=self.origin_metadata,
)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Here we should also drop the origin metadata of the removed data files, no?

Copy link
Member Author

@lhoestq lhoestq Jun 22, 2023

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

origin_metadata is the list of origin per pattern, not per data file. We don't know which pattern generated which data file, and a pattern may have generated multiple data files. So I don't think we can easily drop origin metadata during filtering.

Note that for packaged builders patterns often look like "**" or "train/**" so there's only a few origin_metadata. Adding or removing unsupported files in the dataset repo won't change the origin metadata.

@lhoestq lhoestq merged commit 76f75a9 into main Jun 22, 2023
@lhoestq lhoestq deleted the filter-extensions branch June 22, 2023 14:16
@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006634 / 0.011353 (-0.004719) 0.004003 / 0.011008 (-0.007005) 0.097874 / 0.038508 (0.059365) 0.043528 / 0.023109 (0.020419) 0.302293 / 0.275898 (0.026395) 0.357041 / 0.323480 (0.033561) 0.003761 / 0.007986 (-0.004225) 0.004312 / 0.004328 (-0.000016) 0.076253 / 0.004250 (0.072003) 0.062807 / 0.037052 (0.025755) 0.316737 / 0.258489 (0.058248) 0.356722 / 0.293841 (0.062881) 0.030816 / 0.128546 (-0.097730) 0.008691 / 0.075646 (-0.066955) 0.328366 / 0.419271 (-0.090906) 0.062299 / 0.043533 (0.018766) 0.293877 / 0.255139 (0.038738) 0.319832 / 0.283200 (0.036632) 0.024996 / 0.141683 (-0.116687) 1.473912 / 1.452155 (0.021758) 1.565439 / 1.492716 (0.072723)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.208428 / 0.018006 (0.190422) 0.435618 / 0.000490 (0.435128) 0.000695 / 0.000200 (0.000495) 0.000056 / 0.000054 (0.000001)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.026253 / 0.037411 (-0.011158) 0.106908 / 0.014526 (0.092382) 0.117075 / 0.176557 (-0.059482) 0.177969 / 0.737135 (-0.559166) 0.123400 / 0.296338 (-0.172938)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.424970 / 0.215209 (0.209761) 4.203233 / 2.077655 (2.125578) 2.009679 / 1.504120 (0.505559) 1.825691 / 1.541195 (0.284496) 1.870639 / 1.468490 (0.402149) 0.530758 / 4.584777 (-4.054019) 3.718791 / 3.745712 (-0.026921) 1.800206 / 5.269862 (-3.469656) 1.071651 / 4.565676 (-3.494025) 0.065126 / 0.424275 (-0.359149) 0.011312 / 0.007607 (0.003704) 0.532503 / 0.226044 (0.306458) 5.353950 / 2.268929 (3.085021) 2.463548 / 55.444624 (-52.981076) 2.139832 / 6.876477 (-4.736645) 2.238722 / 2.142072 (0.096650) 0.655736 / 4.805227 (-4.149492) 0.141689 / 6.500664 (-6.358975) 0.063282 / 0.075469 (-0.012187)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.183523 / 1.841788 (-0.658265) 14.146428 / 8.074308 (6.072120) 14.312883 / 10.191392 (4.121491) 0.169286 / 0.680424 (-0.511138) 0.017343 / 0.534201 (-0.516858) 0.397934 / 0.579283 (-0.181349) 0.417791 / 0.434364 (-0.016573) 0.463639 / 0.540337 (-0.076698) 0.562787 / 1.386936 (-0.824149)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006594 / 0.011353 (-0.004759) 0.004086 / 0.011008 (-0.006922) 0.075122 / 0.038508 (0.036614) 0.041849 / 0.023109 (0.018740) 0.362645 / 0.275898 (0.086747) 0.464350 / 0.323480 (0.140870) 0.003760 / 0.007986 (-0.004226) 0.003327 / 0.004328 (-0.001001) 0.076154 / 0.004250 (0.071904) 0.053232 / 0.037052 (0.016180) 0.407863 / 0.258489 (0.149374) 0.460787 / 0.293841 (0.166946) 0.031917 / 0.128546 (-0.096630) 0.008770 / 0.075646 (-0.066876) 0.082612 / 0.419271 (-0.336660) 0.051311 / 0.043533 (0.007779) 0.354508 / 0.255139 (0.099369) 0.419533 / 0.283200 (0.136334) 0.023980 / 0.141683 (-0.117703) 1.491255 / 1.452155 (0.039100) 1.536101 / 1.492716 (0.043384)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.178261 / 0.018006 (0.160255) 0.444680 / 0.000490 (0.444190) 0.013761 / 0.000200 (0.013561) 0.000117 / 0.000054 (0.000063)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.027875 / 0.037411 (-0.009536) 0.111269 / 0.014526 (0.096744) 0.121096 / 0.176557 (-0.055461) 0.174387 / 0.737135 (-0.562749) 0.124714 / 0.296338 (-0.171624)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.445422 / 0.215209 (0.230213) 4.435877 / 2.077655 (2.358222) 2.221895 / 1.504120 (0.717775) 2.030571 / 1.541195 (0.489376) 2.074863 / 1.468490 (0.606373) 0.543331 / 4.584777 (-4.041446) 3.753615 / 3.745712 (0.007903) 3.317074 / 5.269862 (-1.952787) 1.630390 / 4.565676 (-2.935286) 0.066726 / 0.424275 (-0.357549) 0.011556 / 0.007607 (0.003949) 0.546985 / 0.226044 (0.320941) 5.460634 / 2.268929 (3.191705) 2.705945 / 55.444624 (-52.738679) 2.373425 / 6.876477 (-4.503052) 2.401472 / 2.142072 (0.259399) 0.663225 / 4.805227 (-4.142002) 0.143694 / 6.500664 (-6.356970) 0.065283 / 0.075469 (-0.010186)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.264804 / 1.841788 (-0.576983) 14.803228 / 8.074308 (6.728919) 14.178514 / 10.191392 (3.987122) 0.162651 / 0.680424 (-0.517772) 0.017586 / 0.534201 (-0.516615) 0.398740 / 0.579283 (-0.180543) 0.414478 / 0.434364 (-0.019886) 0.465442 / 0.540337 (-0.074895) 0.563450 / 1.386936 (-0.823486)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

CSV datasets should only read the CSV data files in the repo
3 participants