Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Use yaml instead of get data patterns when possible #6154

Merged
merged 3 commits into from
Aug 17, 2023

Conversation

lhoestq
Copy link
Member

@lhoestq lhoestq commented Aug 17, 2023

This would make the data files resolution faster: no need to list all the data files to infer the dataset builder to use.

fix #6140

if self.data_files is not None:
patterns = sanitize_patterns(self.data_files)
if metadata_configs and "data_files" in next(iter(metadata_configs.values())):
patterns = sanitize_patterns(next(iter(metadata_configs.values()))["data_files"])
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

what if various configs in the metadata_configs use various type of files? (edge case maybe)

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is not supported yet, and would require a refactor.

In a subsequent PR we can raise an error if it happens. Currently it raises an error if it fails to load data files if it uses the wrong dataset builder but this is confusing

@HuggingFaceDocBuilderDev
Copy link

HuggingFaceDocBuilderDev commented Aug 17, 2023

The documentation is not available anymore as the PR was closed or merged.

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006829 / 0.011353 (-0.004524) 0.004535 / 0.011008 (-0.006473) 0.085255 / 0.038508 (0.046747) 0.080861 / 0.023109 (0.057752) 0.366023 / 0.275898 (0.090125) 0.403095 / 0.323480 (0.079615) 0.005615 / 0.007986 (-0.002370) 0.003830 / 0.004328 (-0.000498) 0.064502 / 0.004250 (0.060251) 0.053916 / 0.037052 (0.016863) 0.366010 / 0.258489 (0.107521) 0.414565 / 0.293841 (0.120724) 0.031500 / 0.128546 (-0.097046) 0.009252 / 0.075646 (-0.066394) 0.289584 / 0.419271 (-0.129688) 0.052984 / 0.043533 (0.009451) 0.352626 / 0.255139 (0.097487) 0.390964 / 0.283200 (0.107764) 0.025118 / 0.141683 (-0.116565) 1.462316 / 1.452155 (0.010161) 1.565682 / 1.492716 (0.072966)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.294432 / 0.018006 (0.276426) 0.618366 / 0.000490 (0.617876) 0.003270 / 0.000200 (0.003071) 0.000081 / 0.000054 (0.000027)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.031194 / 0.037411 (-0.006217) 0.088892 / 0.014526 (0.074366) 0.102580 / 0.176557 (-0.073977) 0.159449 / 0.737135 (-0.577686) 0.104434 / 0.296338 (-0.191905)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.385690 / 0.215209 (0.170481) 3.832782 / 2.077655 (1.755128) 1.862521 / 1.504120 (0.358401) 1.685674 / 1.541195 (0.144479) 1.724984 / 1.468490 (0.256494) 0.483700 / 4.584777 (-4.101077) 3.664154 / 3.745712 (-0.081558) 3.323023 / 5.269862 (-1.946839) 2.055958 / 4.565676 (-2.509718) 0.056990 / 0.424275 (-0.367285) 0.007674 / 0.007607 (0.000067) 0.460642 / 0.226044 (0.234598) 4.609964 / 2.268929 (2.341036) 2.434868 / 55.444624 (-53.009756) 2.003347 / 6.876477 (-4.873130) 2.209520 / 2.142072 (0.067448) 0.629363 / 4.805227 (-4.175864) 0.135434 / 6.500664 (-6.365230) 0.060498 / 0.075469 (-0.014971)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.253917 / 1.841788 (-0.587870) 19.988953 / 8.074308 (11.914645) 14.353739 / 10.191392 (4.162347) 0.165987 / 0.680424 (-0.514437) 0.018299 / 0.534201 (-0.515902) 0.395532 / 0.579283 (-0.183751) 0.418708 / 0.434364 (-0.015656) 0.460865 / 0.540337 (-0.079472) 0.633925 / 1.386936 (-0.753011)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006631 / 0.011353 (-0.004722) 0.004109 / 0.011008 (-0.006899) 0.065003 / 0.038508 (0.026495) 0.080407 / 0.023109 (0.057297) 0.362966 / 0.275898 (0.087068) 0.389727 / 0.323480 (0.066247) 0.005588 / 0.007986 (-0.002397) 0.003517 / 0.004328 (-0.000812) 0.065821 / 0.004250 (0.061570) 0.057614 / 0.037052 (0.020561) 0.367422 / 0.258489 (0.108932) 0.400706 / 0.293841 (0.106865) 0.031560 / 0.128546 (-0.096986) 0.008659 / 0.075646 (-0.066987) 0.070756 / 0.419271 (-0.348516) 0.049821 / 0.043533 (0.006288) 0.360836 / 0.255139 (0.105697) 0.383981 / 0.283200 (0.100781) 0.023719 / 0.141683 (-0.117963) 1.485197 / 1.452155 (0.033043) 1.544899 / 1.492716 (0.052182)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.336480 / 0.018006 (0.318474) 0.532839 / 0.000490 (0.532349) 0.003767 / 0.000200 (0.003567) 0.000087 / 0.000054 (0.000032)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.034132 / 0.037411 (-0.003280) 0.090131 / 0.014526 (0.075605) 0.104086 / 0.176557 (-0.072471) 0.158385 / 0.737135 (-0.578751) 0.106417 / 0.296338 (-0.189922)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.416462 / 0.215209 (0.201253) 4.160409 / 2.077655 (2.082755) 2.195355 / 1.504120 (0.691235) 2.051234 / 1.541195 (0.510040) 2.012116 / 1.468490 (0.543626) 0.477414 / 4.584777 (-4.107363) 3.590326 / 3.745712 (-0.155386) 3.318490 / 5.269862 (-1.951371) 2.064124 / 4.565676 (-2.501553) 0.057040 / 0.424275 (-0.367235) 0.007283 / 0.007607 (-0.000324) 0.480490 / 0.226044 (0.254445) 4.804013 / 2.268929 (2.535084) 2.625940 / 55.444624 (-52.818685) 2.231537 / 6.876477 (-4.644939) 2.441649 / 2.142072 (0.299576) 0.573207 / 4.805227 (-4.232020) 0.131685 / 6.500664 (-6.368979) 0.060112 / 0.075469 (-0.015357)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.358587 / 1.841788 (-0.483200) 20.457562 / 8.074308 (12.383254) 14.236304 / 10.191392 (4.044912) 0.152860 / 0.680424 (-0.527563) 0.018466 / 0.534201 (-0.515735) 0.401391 / 0.579283 (-0.177893) 0.410252 / 0.434364 (-0.024111) 0.484335 / 0.540337 (-0.056002) 0.663818 / 1.386936 (-0.723118)

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.007725 / 0.011353 (-0.003628) 0.004448 / 0.011008 (-0.006560) 0.098689 / 0.038508 (0.060180) 0.082919 / 0.023109 (0.059809) 0.380707 / 0.275898 (0.104809) 0.452977 / 0.323480 (0.129497) 0.004430 / 0.007986 (-0.003555) 0.003712 / 0.004328 (-0.000616) 0.076675 / 0.004250 (0.072425) 0.062281 / 0.037052 (0.025228) 0.403370 / 0.258489 (0.144881) 0.464557 / 0.293841 (0.170716) 0.035646 / 0.128546 (-0.092900) 0.009776 / 0.075646 (-0.065870) 0.341955 / 0.419271 (-0.077316) 0.059515 / 0.043533 (0.015983) 0.388421 / 0.255139 (0.133282) 0.439496 / 0.283200 (0.156296) 0.029090 / 0.141683 (-0.112593) 1.727473 / 1.452155 (0.275319) 1.810448 / 1.492716 (0.317732)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.221215 / 0.018006 (0.203208) 0.486660 / 0.000490 (0.486171) 0.005467 / 0.000200 (0.005267) 0.000110 / 0.000054 (0.000056)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.032491 / 0.037411 (-0.004920) 0.094446 / 0.014526 (0.079920) 0.110339 / 0.176557 (-0.066217) 0.175004 / 0.737135 (-0.562131) 0.109209 / 0.296338 (-0.187129)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.453966 / 0.215209 (0.238757) 4.515842 / 2.077655 (2.438187) 2.240512 / 1.504120 (0.736392) 2.059911 / 1.541195 (0.518717) 2.150635 / 1.468490 (0.682145) 0.564509 / 4.584777 (-4.020268) 4.055208 / 3.745712 (0.309496) 3.614084 / 5.269862 (-1.655778) 2.295760 / 4.565676 (-2.269917) 0.066507 / 0.424275 (-0.357768) 0.008909 / 0.007607 (0.001302) 0.542604 / 0.226044 (0.316560) 5.412162 / 2.268929 (3.143233) 2.758757 / 55.444624 (-52.685867) 2.430693 / 6.876477 (-4.445784) 2.669866 / 2.142072 (0.527793) 0.681756 / 4.805227 (-4.123471) 0.156524 / 6.500664 (-6.344140) 0.069499 / 0.075469 (-0.005970)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.571591 / 1.841788 (-0.270197) 22.543437 / 8.074308 (14.469129) 16.068426 / 10.191392 (5.877034) 0.169860 / 0.680424 (-0.510564) 0.021216 / 0.534201 (-0.512985) 0.468745 / 0.579283 (-0.110538) 0.475924 / 0.434364 (0.041560) 0.535574 / 0.540337 (-0.004763) 0.733823 / 1.386936 (-0.653113)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.008038 / 0.011353 (-0.003315) 0.004565 / 0.011008 (-0.006443) 0.076892 / 0.038508 (0.038384) 0.089559 / 0.023109 (0.066450) 0.456752 / 0.275898 (0.180854) 0.497282 / 0.323480 (0.173802) 0.005991 / 0.007986 (-0.001995) 0.003784 / 0.004328 (-0.000545) 0.076339 / 0.004250 (0.072089) 0.066050 / 0.037052 (0.028998) 0.462708 / 0.258489 (0.204219) 0.503711 / 0.293841 (0.209870) 0.037098 / 0.128546 (-0.091448) 0.009869 / 0.075646 (-0.065777) 0.083678 / 0.419271 (-0.335594) 0.058166 / 0.043533 (0.014633) 0.461839 / 0.255139 (0.206700) 0.481546 / 0.283200 (0.198347) 0.027755 / 0.141683 (-0.113928) 1.738490 / 1.452155 (0.286335) 1.832276 / 1.492716 (0.339560)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.329935 / 0.018006 (0.311929) 0.497438 / 0.000490 (0.496949) 0.034644 / 0.000200 (0.034444) 0.000199 / 0.000054 (0.000145)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.035427 / 0.037411 (-0.001984) 0.105689 / 0.014526 (0.091163) 0.117706 / 0.176557 (-0.058850) 0.177862 / 0.737135 (-0.559273) 0.116791 / 0.296338 (-0.179547)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.484851 / 0.215209 (0.269642) 4.804346 / 2.077655 (2.726691) 2.494801 / 1.504120 (0.990681) 2.320185 / 1.541195 (0.778990) 2.374090 / 1.468490 (0.905600) 0.567397 / 4.584777 (-4.017380) 4.087402 / 3.745712 (0.341690) 3.794245 / 5.269862 (-1.475616) 2.378481 / 4.565676 (-2.187195) 0.068228 / 0.424275 (-0.356047) 0.008740 / 0.007607 (0.001133) 0.574876 / 0.226044 (0.348832) 5.742644 / 2.268929 (3.473716) 3.047661 / 55.444624 (-52.396963) 2.729742 / 6.876477 (-4.146735) 2.852510 / 2.142072 (0.710438) 0.679450 / 4.805227 (-4.125777) 0.156162 / 6.500664 (-6.344502) 0.074051 / 0.075469 (-0.001418)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.576182 / 1.841788 (-0.265605) 23.298147 / 8.074308 (15.223839) 16.344621 / 10.191392 (6.153229) 0.167571 / 0.680424 (-0.512852) 0.021423 / 0.534201 (-0.512778) 0.464511 / 0.579283 (-0.114772) 0.453257 / 0.434364 (0.018893) 0.563439 / 0.540337 (0.023102) 0.764759 / 1.386936 (-0.622177)

@lhoestq lhoestq marked this pull request as ready for review August 17, 2023 09:46
@mariosasko
Copy link
Collaborator

This should also fix #6140, so please link it with this PR before merging.

@lhoestq
Copy link
Member Author

lhoestq commented Aug 17, 2023

Done !

Copy link
Collaborator

@mariosasko mariosasko left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Oops, forgot to approve 🙂!

PS: The data files resolution (and builder creation) is hard to follow when metadata_configs are present. It would be great if we could refactor this eventually to make it easier to maintain this part of the codebase.

@lhoestq lhoestq merged commit 5ca2ba0 into main Aug 17, 2023
13 checks passed
@lhoestq lhoestq deleted the use-yaml-instead-of-get_data_patterns-when-possible branch August 17, 2023 20:37
@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006719 / 0.011353 (-0.004634) 0.004299 / 0.011008 (-0.006709) 0.085296 / 0.038508 (0.046788) 0.085144 / 0.023109 (0.062035) 0.361703 / 0.275898 (0.085805) 0.397721 / 0.323480 (0.074241) 0.005920 / 0.007986 (-0.002065) 0.003853 / 0.004328 (-0.000476) 0.065633 / 0.004250 (0.061383) 0.057000 / 0.037052 (0.019947) 0.379981 / 0.258489 (0.121492) 0.419041 / 0.293841 (0.125200) 0.031225 / 0.128546 (-0.097322) 0.008868 / 0.075646 (-0.066779) 0.288808 / 0.419271 (-0.130463) 0.052391 / 0.043533 (0.008859) 0.362349 / 0.255139 (0.107210) 0.399858 / 0.283200 (0.116658) 0.025843 / 0.141683 (-0.115840) 1.498988 / 1.452155 (0.046834) 1.547290 / 1.492716 (0.054574)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.278091 / 0.018006 (0.260085) 0.621794 / 0.000490 (0.621305) 0.003770 / 0.000200 (0.003570) 0.000084 / 0.000054 (0.000029)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.029128 / 0.037411 (-0.008283) 0.082061 / 0.014526 (0.067536) 0.101758 / 0.176557 (-0.074799) 0.155724 / 0.737135 (-0.581411) 0.102173 / 0.296338 (-0.194165)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.387145 / 0.215209 (0.171935) 3.868262 / 2.077655 (1.790607) 1.886440 / 1.504120 (0.382320) 1.723305 / 1.541195 (0.182111) 1.805411 / 1.468490 (0.336921) 0.485024 / 4.584777 (-4.099753) 3.637859 / 3.745712 (-0.107853) 3.319593 / 5.269862 (-1.950269) 2.087860 / 4.565676 (-2.477817) 0.056992 / 0.424275 (-0.367283) 0.007623 / 0.007607 (0.000016) 0.468182 / 0.226044 (0.242138) 4.681112 / 2.268929 (2.412183) 2.407010 / 55.444624 (-53.037614) 2.026604 / 6.876477 (-4.849872) 2.298158 / 2.142072 (0.156086) 0.581839 / 4.805227 (-4.223388) 0.132101 / 6.500664 (-6.368563) 0.060472 / 0.075469 (-0.014997)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.236422 / 1.841788 (-0.605365) 20.505168 / 8.074308 (12.430860) 14.356081 / 10.191392 (4.164689) 0.148808 / 0.680424 (-0.531616) 0.018433 / 0.534201 (-0.515768) 0.391323 / 0.579283 (-0.187960) 0.413142 / 0.434364 (-0.021222) 0.453484 / 0.540337 (-0.086853) 0.620771 / 1.386936 (-0.766165)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.007030 / 0.011353 (-0.004323) 0.004430 / 0.011008 (-0.006578) 0.065578 / 0.038508 (0.027070) 0.090751 / 0.023109 (0.067642) 0.389121 / 0.275898 (0.113223) 0.424657 / 0.323480 (0.101177) 0.006575 / 0.007986 (-0.001410) 0.003855 / 0.004328 (-0.000473) 0.066175 / 0.004250 (0.061925) 0.063255 / 0.037052 (0.026202) 0.397161 / 0.258489 (0.138672) 0.435291 / 0.293841 (0.141450) 0.031622 / 0.128546 (-0.096925) 0.008900 / 0.075646 (-0.066747) 0.071694 / 0.419271 (-0.347577) 0.049161 / 0.043533 (0.005628) 0.386214 / 0.255139 (0.131075) 0.404571 / 0.283200 (0.121372) 0.024821 / 0.141683 (-0.116862) 1.489514 / 1.452155 (0.037359) 1.576139 / 1.492716 (0.083423)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.289884 / 0.018006 (0.271878) 0.629342 / 0.000490 (0.628852) 0.004799 / 0.000200 (0.004599) 0.000160 / 0.000054 (0.000106)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.032081 / 0.037411 (-0.005331) 0.088152 / 0.014526 (0.073626) 0.107289 / 0.176557 (-0.069267) 0.164598 / 0.737135 (-0.572537) 0.108395 / 0.296338 (-0.187944)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.426723 / 0.215209 (0.211514) 4.267719 / 2.077655 (2.190064) 2.289657 / 1.504120 (0.785537) 2.117435 / 1.541195 (0.576240) 2.187292 / 1.468490 (0.718802) 0.478387 / 4.584777 (-4.106390) 3.625096 / 3.745712 (-0.120616) 3.408036 / 5.269862 (-1.861826) 2.124117 / 4.565676 (-2.441559) 0.056537 / 0.424275 (-0.367738) 0.007489 / 0.007607 (-0.000118) 0.502434 / 0.226044 (0.276389) 5.025357 / 2.268929 (2.756428) 2.740554 / 55.444624 (-52.704070) 2.418841 / 6.876477 (-4.457635) 2.730764 / 2.142072 (0.588691) 0.600013 / 4.805227 (-4.205214) 0.133039 / 6.500664 (-6.367625) 0.061466 / 0.075469 (-0.014003)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.330211 / 1.841788 (-0.511577) 21.092100 / 8.074308 (13.017792) 14.463054 / 10.191392 (4.271662) 0.154149 / 0.680424 (-0.526274) 0.018891 / 0.534201 (-0.515310) 0.393078 / 0.579283 (-0.186205) 0.415279 / 0.434364 (-0.019085) 0.479469 / 0.540337 (-0.060868) 0.659953 / 1.386936 (-0.726983)

albertvillanova pushed a commit that referenced this pull request Oct 24, 2023
* use yaml data_files instead of get_data_patterns when possible

* minor fix docstring

* update comment
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

Misalignment between file format specified in configs metadata YAML and the inferred builder
4 participants