Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix CI 404 errors #6262

Merged
merged 6 commits into from
Sep 28, 2023
Merged

Fix CI 404 errors #6262

merged 6 commits into from
Sep 28, 2023

Conversation

albertvillanova
Copy link
Member

@albertvillanova albertvillanova commented Sep 27, 2023

Currently our CI usually raises 404 errors when trying to delete temporary repositories. See, e.g.: https://github.com/huggingface/datasets/actions/runs/6314980985/job/17146507884

FAILED tests/test_upstream_hub.py::TestPushToHub::test_push_dataset_dict_to_hub_multiple_files_with_max_shard_size - huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6512fb99-4a52c561752ece3d77eb6d57;2b61cae4-613d-4a73-bbb1-2faf9e32b02d)
Repository Not Found for url: https://hub-ci.huggingface.co/api/repos/delete.
Please make sure you specified the correct `repo_id` and `repo_type`.
If you are trying to access a private or gated repo, make sure you are authenticated.

FAILED tests/test_upstream_hub.py::TestPushToHub::test_push_dataset_to_hub_custom_features_audio - huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6512fbb2-0333dd666d42f0e173c2bb68;dfdc4271-b49b-4008-8c49-f05cf7c1d53d)
Repository Not Found for url: https://hub-ci.huggingface.co/api/repos/delete.
Please make sure you specified the correct `repo_id` and `repo_type`.
If you are trying to access a private or gated repo, make sure you are authenticated.

FAILED tests/test_upstream_hub.py::TestPushToHub::test_push_dataset_dict_to_hub_custom_splits - huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6512fbca-167690694f39770a5b3a444e;baeaa905-0a57-4585-ac97-9aaae12dd47d)
Repository Not Found for url: https://hub-ci.huggingface.co/api/repos/delete.
Please make sure you specified the correct `repo_id` and `repo_type`.
If you are trying to access a private or gated repo, make sure you are authenticated.

I think this can be caused by collisions in temporary repository IDs because we create them in multiprocessing:

with temporary_repo(f"{CI_HUB_USER}/test-{int(time.time() * 10e3)}") as ds_name:

This can also be caused when there is another issue that does not allow the creation of the repository, thus making it impossible to delete it.

This PR tries to fix this issue by increasing the precision of the number on the repository ID: 10e6 instead of 10e3.
Additionally, this PR catches RepositoryNotFoundError.

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.008220 / 0.011353 (-0.003133) 0.005560 / 0.011008 (-0.005448) 0.100147 / 0.038508 (0.061639) 0.070106 / 0.023109 (0.046996) 0.411906 / 0.275898 (0.136008) 0.432825 / 0.323480 (0.109345) 0.004795 / 0.007986 (-0.003190) 0.004094 / 0.004328 (-0.000235) 0.075719 / 0.004250 (0.071468) 0.067426 / 0.037052 (0.030374) 0.428531 / 0.258489 (0.170042) 0.437114 / 0.293841 (0.143273) 0.045603 / 0.128546 (-0.082943) 0.013333 / 0.075646 (-0.062313) 0.353137 / 0.419271 (-0.066134) 0.067902 / 0.043533 (0.024369) 0.396633 / 0.255139 (0.141494) 0.399185 / 0.283200 (0.115985) 0.036377 / 0.141683 (-0.105306) 1.624249 / 1.452155 (0.172094) 1.792575 / 1.492716 (0.299859)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.315847 / 0.018006 (0.297840) 0.595009 / 0.000490 (0.594519) 0.018876 / 0.000200 (0.018676) 0.000613 / 0.000054 (0.000558)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.029886 / 0.037411 (-0.007526) 0.085765 / 0.014526 (0.071239) 0.108680 / 0.176557 (-0.067877) 0.174588 / 0.737135 (-0.562548) 0.104494 / 0.296338 (-0.191844)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.594429 / 0.215209 (0.379220) 5.912352 / 2.077655 (3.834698) 2.408501 / 1.504120 (0.904381) 2.050914 / 1.541195 (0.509720) 2.199349 / 1.468490 (0.730859) 0.813797 / 4.584777 (-3.770980) 5.169577 / 3.745712 (1.423864) 4.653951 / 5.269862 (-0.615911) 2.805423 / 4.565676 (-1.760253) 0.092278 / 0.424275 (-0.331997) 0.007394 / 0.007607 (-0.000213) 0.684029 / 0.226044 (0.457985) 6.964260 / 2.268929 (4.695331) 3.108408 / 55.444624 (-52.336217) 2.470907 / 6.876477 (-4.405569) 2.460153 / 2.142072 (0.318081) 0.986445 / 4.805227 (-3.818782) 0.213069 / 6.500664 (-6.287596) 0.074061 / 0.075469 (-0.001408)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.590732 / 1.841788 (-0.251056) 23.736918 / 8.074308 (15.662609) 21.223910 / 10.191392 (11.032518) 0.236173 / 0.680424 (-0.444251) 0.030056 / 0.534201 (-0.504145) 0.489461 / 0.579283 (-0.089822) 0.607582 / 0.434364 (0.173218) 0.539889 / 0.540337 (-0.000449) 0.817942 / 1.386936 (-0.568994)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.008042 / 0.011353 (-0.003311) 0.004836 / 0.011008 (-0.006173) 0.075434 / 0.038508 (0.036926) 0.080818 / 0.023109 (0.057709) 0.474797 / 0.275898 (0.198899) 0.526168 / 0.323480 (0.202689) 0.006463 / 0.007986 (-0.001522) 0.004031 / 0.004328 (-0.000297) 0.074141 / 0.004250 (0.069891) 0.068265 / 0.037052 (0.031212) 0.562550 / 0.258489 (0.304061) 0.544820 / 0.293841 (0.250979) 0.047263 / 0.128546 (-0.081283) 0.014113 / 0.075646 (-0.061534) 0.086061 / 0.419271 (-0.333210) 0.062475 / 0.043533 (0.018942) 0.479912 / 0.255139 (0.224773) 0.494784 / 0.283200 (0.211584) 0.035847 / 0.141683 (-0.105836) 1.726452 / 1.452155 (0.274297) 1.770113 / 1.492716 (0.277396)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.286713 / 0.018006 (0.268707) 0.609704 / 0.000490 (0.609214) 0.009342 / 0.000200 (0.009143) 0.000134 / 0.000054 (0.000080)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.035137 / 0.037411 (-0.002275) 0.099331 / 0.014526 (0.084805) 0.108971 / 0.176557 (-0.067586) 0.170952 / 0.737135 (-0.566183) 0.111736 / 0.296338 (-0.184603)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.617434 / 0.215209 (0.402225) 6.204351 / 2.077655 (4.126697) 2.854347 / 1.504120 (1.350227) 2.557424 / 1.541195 (1.016229) 2.638173 / 1.468490 (1.169683) 0.854234 / 4.584777 (-3.730543) 5.383288 / 3.745712 (1.637576) 4.698098 / 5.269862 (-0.571763) 2.903860 / 4.565676 (-1.661817) 0.094689 / 0.424275 (-0.329586) 0.007892 / 0.007607 (0.000285) 0.729420 / 0.226044 (0.503376) 7.356691 / 2.268929 (5.087763) 3.708039 / 55.444624 (-51.736585) 2.979734 / 6.876477 (-3.896743) 2.978983 / 2.142072 (0.836911) 1.040554 / 4.805227 (-3.764673) 0.211246 / 6.500664 (-6.289418) 0.079880 / 0.075469 (0.004411)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.676057 / 1.841788 (-0.165731) 23.428443 / 8.074308 (15.354135) 21.016293 / 10.191392 (10.824901) 0.260927 / 0.680424 (-0.419497) 0.030689 / 0.534201 (-0.503512) 0.495652 / 0.579283 (-0.083632) 0.622976 / 0.434364 (0.188612) 0.561175 / 0.540337 (0.020837) 0.786733 / 1.386936 (-0.600203)

@HuggingFaceDocBuilderDev
Copy link

HuggingFaceDocBuilderDev commented Sep 27, 2023

The documentation is not available anymore as the PR was closed or merged.

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005942 / 0.011353 (-0.005410) 0.003706 / 0.011008 (-0.007302) 0.081002 / 0.038508 (0.042493) 0.056854 / 0.023109 (0.033745) 0.358668 / 0.275898 (0.082770) 0.369718 / 0.323480 (0.046238) 0.005202 / 0.007986 (-0.002784) 0.002841 / 0.004328 (-0.001487) 0.062976 / 0.004250 (0.058726) 0.051308 / 0.037052 (0.014255) 0.373636 / 0.258489 (0.115147) 0.390480 / 0.293841 (0.096639) 0.027480 / 0.128546 (-0.101067) 0.007960 / 0.075646 (-0.067686) 0.262719 / 0.419271 (-0.156552) 0.046488 / 0.043533 (0.002955) 0.347299 / 0.255139 (0.092160) 0.393448 / 0.283200 (0.110249) 0.019445 / 0.141683 (-0.122238) 1.431314 / 1.452155 (-0.020841) 1.495578 / 1.492716 (0.002862)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.223724 / 0.018006 (0.205718) 0.416929 / 0.000490 (0.416440) 0.005253 / 0.000200 (0.005053) 0.000217 / 0.000054 (0.000163)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.023571 / 0.037411 (-0.013841) 0.073503 / 0.014526 (0.058978) 0.081366 / 0.176557 (-0.095190) 0.142716 / 0.737135 (-0.594420) 0.082612 / 0.296338 (-0.213727)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.407319 / 0.215209 (0.192109) 4.141404 / 2.077655 (2.063749) 1.910842 / 1.504120 (0.406722) 1.731694 / 1.541195 (0.190499) 1.805228 / 1.468490 (0.336738) 0.497109 / 4.584777 (-4.087668) 3.107624 / 3.745712 (-0.638088) 2.890687 / 5.269862 (-2.379174) 1.795913 / 4.565676 (-2.769763) 0.057099 / 0.424275 (-0.367176) 0.006414 / 0.007607 (-0.001194) 0.482127 / 0.226044 (0.256083) 4.835158 / 2.268929 (2.566229) 2.368909 / 55.444624 (-53.075715) 2.001608 / 6.876477 (-4.874868) 2.004492 / 2.142072 (-0.137580) 0.579910 / 4.805227 (-4.225317) 0.123541 / 6.500664 (-6.377123) 0.059651 / 0.075469 (-0.015818)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.242364 / 1.841788 (-0.599424) 16.982676 / 8.074308 (8.908368) 13.718885 / 10.191392 (3.527493) 0.132759 / 0.680424 (-0.547665) 0.017012 / 0.534201 (-0.517189) 0.333447 / 0.579283 (-0.245836) 0.360149 / 0.434364 (-0.074215) 0.385526 / 0.540337 (-0.154811) 0.536915 / 1.386936 (-0.850021)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005946 / 0.011353 (-0.005407) 0.003442 / 0.011008 (-0.007566) 0.062595 / 0.038508 (0.024087) 0.058699 / 0.023109 (0.035590) 0.442626 / 0.275898 (0.166728) 0.473773 / 0.323480 (0.150293) 0.004622 / 0.007986 (-0.003364) 0.002812 / 0.004328 (-0.001516) 0.064099 / 0.004250 (0.059849) 0.046784 / 0.037052 (0.009731) 0.466049 / 0.258489 (0.207560) 0.487912 / 0.293841 (0.194071) 0.028372 / 0.128546 (-0.100174) 0.007992 / 0.075646 (-0.067654) 0.068151 / 0.419271 (-0.351120) 0.041010 / 0.043533 (-0.002523) 0.442331 / 0.255139 (0.187192) 0.469686 / 0.283200 (0.186487) 0.019694 / 0.141683 (-0.121989) 1.467928 / 1.452155 (0.015774) 1.525635 / 1.492716 (0.032918)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.204459 / 0.018006 (0.186453) 0.407766 / 0.000490 (0.407276) 0.003898 / 0.000200 (0.003698) 0.000077 / 0.000054 (0.000023)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.025909 / 0.037411 (-0.011503) 0.080341 / 0.014526 (0.065816) 0.088231 / 0.176557 (-0.088325) 0.144056 / 0.737135 (-0.593079) 0.089769 / 0.296338 (-0.206569)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.462876 / 0.215209 (0.247667) 4.625983 / 2.077655 (2.548329) 2.580079 / 1.504120 (1.075959) 2.402792 / 1.541195 (0.861597) 2.424982 / 1.468490 (0.956491) 0.503654 / 4.584777 (-4.081123) 3.178995 / 3.745712 (-0.566717) 2.956126 / 5.269862 (-2.313735) 1.847837 / 4.565676 (-2.717840) 0.057964 / 0.424275 (-0.366311) 0.006405 / 0.007607 (-0.001202) 0.536036 / 0.226044 (0.309992) 5.374416 / 2.268929 (3.105487) 3.036440 / 55.444624 (-52.408184) 2.682054 / 6.876477 (-4.194422) 2.683462 / 2.142072 (0.541390) 0.592751 / 4.805227 (-4.212477) 0.124313 / 6.500664 (-6.376351) 0.061127 / 0.075469 (-0.014342)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.383539 / 1.841788 (-0.458249) 17.766221 / 8.074308 (9.691913) 15.306600 / 10.191392 (5.115208) 0.145035 / 0.680424 (-0.535389) 0.018078 / 0.534201 (-0.516123) 0.330102 / 0.579283 (-0.249181) 0.375380 / 0.434364 (-0.058984) 0.388531 / 0.540337 (-0.151807) 0.548720 / 1.386936 (-0.838216)

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006757 / 0.011353 (-0.004596) 0.004110 / 0.011008 (-0.006898) 0.084727 / 0.038508 (0.046219) 0.074328 / 0.023109 (0.051219) 0.310467 / 0.275898 (0.034569) 0.343209 / 0.323480 (0.019729) 0.004228 / 0.007986 (-0.003757) 0.003400 / 0.004328 (-0.000929) 0.065546 / 0.004250 (0.061296) 0.063057 / 0.037052 (0.026005) 0.315023 / 0.258489 (0.056534) 0.356395 / 0.293841 (0.062554) 0.031959 / 0.128546 (-0.096588) 0.008577 / 0.075646 (-0.067069) 0.289075 / 0.419271 (-0.130196) 0.055011 / 0.043533 (0.011478) 0.308861 / 0.255139 (0.053722) 0.328691 / 0.283200 (0.045491) 0.027037 / 0.141683 (-0.114646) 1.464314 / 1.452155 (0.012159) 1.549644 / 1.492716 (0.056927)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.238330 / 0.018006 (0.220324) 0.451570 / 0.000490 (0.451080) 0.010873 / 0.000200 (0.010673) 0.000341 / 0.000054 (0.000286)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.029909 / 0.037411 (-0.007503) 0.085222 / 0.014526 (0.070696) 0.100180 / 0.176557 (-0.076377) 0.154842 / 0.737135 (-0.582293) 0.099253 / 0.296338 (-0.197086)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.401603 / 0.215209 (0.186394) 4.009781 / 2.077655 (1.932126) 2.021807 / 1.504120 (0.517687) 1.861017 / 1.541195 (0.319822) 2.009072 / 1.468490 (0.540582) 0.483798 / 4.584777 (-4.100979) 3.580394 / 3.745712 (-0.165318) 3.464587 / 5.269862 (-1.805275) 2.018400 / 4.565676 (-2.547276) 0.057134 / 0.424275 (-0.367141) 0.007303 / 0.007607 (-0.000304) 0.473627 / 0.226044 (0.247582) 4.722634 / 2.268929 (2.453706) 2.490884 / 55.444624 (-52.953741) 2.121568 / 6.876477 (-4.754909) 2.200699 / 2.142072 (0.058626) 0.576728 / 4.805227 (-4.228499) 0.135633 / 6.500664 (-6.365032) 0.061625 / 0.075469 (-0.013844)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.250545 / 1.841788 (-0.591243) 19.167642 / 8.074308 (11.093334) 14.189891 / 10.191392 (3.998499) 0.164552 / 0.680424 (-0.515872) 0.018215 / 0.534201 (-0.515986) 0.389962 / 0.579283 (-0.189321) 0.413972 / 0.434364 (-0.020392) 0.460253 / 0.540337 (-0.080085) 0.647897 / 1.386936 (-0.739039)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006714 / 0.011353 (-0.004639) 0.004081 / 0.011008 (-0.006927) 0.065627 / 0.038508 (0.027119) 0.077644 / 0.023109 (0.054535) 0.409950 / 0.275898 (0.134052) 0.442940 / 0.323480 (0.119460) 0.005523 / 0.007986 (-0.002463) 0.003366 / 0.004328 (-0.000962) 0.065425 / 0.004250 (0.061174) 0.056222 / 0.037052 (0.019169) 0.429928 / 0.258489 (0.171439) 0.457136 / 0.293841 (0.163296) 0.032356 / 0.128546 (-0.096190) 0.008676 / 0.075646 (-0.066970) 0.071785 / 0.419271 (-0.347486) 0.048458 / 0.043533 (0.004925) 0.408003 / 0.255139 (0.152864) 0.433529 / 0.283200 (0.150330) 0.023232 / 0.141683 (-0.118450) 1.483640 / 1.452155 (0.031485) 1.552425 / 1.492716 (0.059709)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.282347 / 0.018006 (0.264341) 0.448742 / 0.000490 (0.448253) 0.039590 / 0.000200 (0.039390) 0.000407 / 0.000054 (0.000353)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.032516 / 0.037411 (-0.004896) 0.095269 / 0.014526 (0.080744) 0.106363 / 0.176557 (-0.070193) 0.157945 / 0.737135 (-0.579191) 0.106783 / 0.296338 (-0.189556)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.436334 / 0.215209 (0.221125) 4.348147 / 2.077655 (2.270492) 2.326830 / 1.504120 (0.822710) 2.162586 / 1.541195 (0.621391) 2.257769 / 1.468490 (0.789279) 0.491677 / 4.584777 (-4.093099) 3.707385 / 3.745712 (-0.038328) 3.567147 / 5.269862 (-1.702715) 2.099451 / 4.565676 (-2.466226) 0.058486 / 0.424275 (-0.365789) 0.007324 / 0.007607 (-0.000283) 0.510962 / 0.226044 (0.284917) 5.106550 / 2.268929 (2.837622) 2.785723 / 55.444624 (-52.658901) 2.452928 / 6.876477 (-4.423548) 2.545034 / 2.142072 (0.402961) 0.611124 / 4.805227 (-4.194103) 0.133503 / 6.500664 (-6.367161) 0.061118 / 0.075469 (-0.014351)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.386640 / 1.841788 (-0.455148) 20.485670 / 8.074308 (12.411362) 15.332223 / 10.191392 (5.140831) 0.164070 / 0.680424 (-0.516354) 0.019962 / 0.534201 (-0.514239) 0.394217 / 0.579283 (-0.185066) 0.428442 / 0.434364 (-0.005922) 0.473784 / 0.540337 (-0.066553) 0.665141 / 1.386936 (-0.721795)

@albertvillanova
Copy link
Member Author

albertvillanova commented Sep 27, 2023

The CI errors seem unrelated to this PR but I think they need further investigation in another PR.

FAILED tests/test_upstream_hub.py::TestPushToHub::test_push_dataset_dict_to_hub_multiple_files - KeyError: 'url'

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.008766 / 0.011353 (-0.002587) 0.005289 / 0.011008 (-0.005720) 0.097220 / 0.038508 (0.058712) 0.072246 / 0.023109 (0.049137) 0.369359 / 0.275898 (0.093461) 0.422571 / 0.323480 (0.099091) 0.004941 / 0.007986 (-0.003044) 0.006103 / 0.004328 (0.001774) 0.075828 / 0.004250 (0.071578) 0.065795 / 0.037052 (0.028743) 0.412835 / 0.258489 (0.154346) 0.430062 / 0.293841 (0.136221) 0.045806 / 0.128546 (-0.082741) 0.013760 / 0.075646 (-0.061887) 0.351542 / 0.419271 (-0.067729) 0.064836 / 0.043533 (0.021304) 0.370162 / 0.255139 (0.115023) 0.434949 / 0.283200 (0.151749) 0.039198 / 0.141683 (-0.102485) 1.670940 / 1.452155 (0.218785) 1.809677 / 1.492716 (0.316961)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.295104 / 0.018006 (0.277097) 0.594584 / 0.000490 (0.594095) 0.010923 / 0.000200 (0.010723) 0.000479 / 0.000054 (0.000425)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.029174 / 0.037411 (-0.008237) 0.094637 / 0.014526 (0.080111) 0.102948 / 0.176557 (-0.073608) 0.171048 / 0.737135 (-0.566087) 0.111465 / 0.296338 (-0.184873)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.582017 / 0.215209 (0.366808) 5.727008 / 2.077655 (3.649354) 2.563211 / 1.504120 (1.059091) 2.308912 / 1.541195 (0.767717) 2.301258 / 1.468490 (0.832768) 0.819594 / 4.584777 (-3.765183) 5.177536 / 3.745712 (1.431824) 4.473602 / 5.269862 (-0.796260) 2.743819 / 4.565676 (-1.821857) 0.090052 / 0.424275 (-0.334223) 0.007903 / 0.007607 (0.000295) 0.679142 / 0.226044 (0.453097) 6.887891 / 2.268929 (4.618962) 3.337926 / 55.444624 (-52.106699) 2.659228 / 6.876477 (-4.217249) 2.641289 / 2.142072 (0.499216) 0.974829 / 4.805227 (-3.830398) 0.205775 / 6.500664 (-6.294890) 0.075268 / 0.075469 (-0.000201)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.500562 / 1.841788 (-0.341226) 22.688483 / 8.074308 (14.614175) 19.634878 / 10.191392 (9.443486) 0.227409 / 0.680424 (-0.453015) 0.029794 / 0.534201 (-0.504407) 0.475204 / 0.579283 (-0.104079) 0.579379 / 0.434364 (0.145016) 0.541244 / 0.540337 (0.000907) 0.739187 / 1.386936 (-0.647749)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.008641 / 0.011353 (-0.002712) 0.006139 / 0.011008 (-0.004870) 0.075048 / 0.038508 (0.036540) 0.074070 / 0.023109 (0.050961) 0.508288 / 0.275898 (0.232390) 0.539770 / 0.323480 (0.216290) 0.006092 / 0.007986 (-0.001894) 0.003748 / 0.004328 (-0.000581) 0.077945 / 0.004250 (0.073695) 0.056989 / 0.037052 (0.019936) 0.526889 / 0.258489 (0.268400) 0.560862 / 0.293841 (0.267021) 0.046507 / 0.128546 (-0.082040) 0.013249 / 0.075646 (-0.062397) 0.088363 / 0.419271 (-0.330908) 0.058776 / 0.043533 (0.015243) 0.495869 / 0.255139 (0.240730) 0.538615 / 0.283200 (0.255415) 0.034055 / 0.141683 (-0.107628) 1.658713 / 1.452155 (0.206558) 1.736599 / 1.492716 (0.243883)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.288355 / 0.018006 (0.270349) 0.571481 / 0.000490 (0.570991) 0.006765 / 0.000200 (0.006565) 0.000101 / 0.000054 (0.000047)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.031836 / 0.037411 (-0.005575) 0.101312 / 0.014526 (0.086786) 0.111433 / 0.176557 (-0.065124) 0.169599 / 0.737135 (-0.567536) 0.114595 / 0.296338 (-0.181743)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.645258 / 0.215209 (0.430049) 6.446653 / 2.077655 (4.368998) 2.983498 / 1.504120 (1.479379) 2.573820 / 1.541195 (1.032625) 2.624286 / 1.468490 (1.155796) 0.815997 / 4.584777 (-3.768780) 5.140248 / 3.745712 (1.394536) 4.636915 / 5.269862 (-0.632947) 2.866313 / 4.565676 (-1.699364) 0.096643 / 0.424275 (-0.327633) 0.008452 / 0.007607 (0.000845) 0.765837 / 0.226044 (0.539793) 7.622897 / 2.268929 (5.353968) 3.796247 / 55.444624 (-51.648378) 3.019349 / 6.876477 (-3.857128) 3.034187 / 2.142072 (0.892115) 1.001682 / 4.805227 (-3.803546) 0.211841 / 6.500664 (-6.288823) 0.073351 / 0.075469 (-0.002119)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.740254 / 1.841788 (-0.101534) 23.465619 / 8.074308 (15.391311) 21.651670 / 10.191392 (11.460278) 0.226129 / 0.680424 (-0.454294) 0.029611 / 0.534201 (-0.504590) 0.441140 / 0.579283 (-0.138143) 0.605591 / 0.434364 (0.171227) 0.552427 / 0.540337 (0.012090) 0.771975 / 1.386936 (-0.614961)

Copy link
Collaborator

@mariosasko mariosasko left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks a lot for working on this!

tests/fixtures/hub.py Outdated Show resolved Hide resolved
@mariosasko
Copy link
Collaborator

mariosasko commented Sep 27, 2023

The CI errors seem unrelated to this PR but I think they need further investigation in another PR.

FAILED tests/test_upstream_hub.py::TestPushToHub::test_push_dataset_dict_to_hub_multiple_files - KeyError: 'url'

We need to wait for huggingface_hub's next release to fix this (see huggingface/huggingface_hub#1675; 409 error is currently ignored, hence the KeyError)

Also, we should be able to fix test_push_dataset_dict_to_hub_overwrite_files by inserting gc.collect() (to drop the "reference" to an Arrow file) between the load_dataset calls to avoid the PermissionError (also reported in #3139)

(Indeed, this can be addressed in subsequent PRs.)

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.008988 / 0.011353 (-0.002365) 0.005270 / 0.011008 (-0.005738) 0.114577 / 0.038508 (0.076068) 0.091630 / 0.023109 (0.068521) 0.409217 / 0.275898 (0.133319) 0.440903 / 0.323480 (0.117424) 0.005226 / 0.007986 (-0.002760) 0.004289 / 0.004328 (-0.000040) 0.082246 / 0.004250 (0.077995) 0.084926 / 0.037052 (0.047873) 0.407822 / 0.258489 (0.149333) 0.440891 / 0.293841 (0.147051) 0.052225 / 0.128546 (-0.076321) 0.014218 / 0.075646 (-0.061429) 0.436994 / 0.419271 (0.017722) 0.066433 / 0.043533 (0.022901) 0.413909 / 0.255139 (0.158770) 0.425729 / 0.283200 (0.142530) 0.039576 / 0.141683 (-0.102107) 1.905604 / 1.452155 (0.453449) 1.907032 / 1.492716 (0.414315)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.313662 / 0.018006 (0.295655) 0.614541 / 0.000490 (0.614051) 0.015631 / 0.000200 (0.015431) 0.000507 / 0.000054 (0.000453)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.029049 / 0.037411 (-0.008362) 0.094626 / 0.014526 (0.080100) 0.104718 / 0.176557 (-0.071838) 0.187346 / 0.737135 (-0.549790) 0.108001 / 0.296338 (-0.188337)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.578997 / 0.215209 (0.363788) 5.815546 / 2.077655 (3.737892) 2.411301 / 1.504120 (0.907181) 2.110088 / 1.541195 (0.568893) 2.147839 / 1.468490 (0.679349) 0.861285 / 4.584777 (-3.723492) 5.264245 / 3.745712 (1.518533) 4.695786 / 5.269862 (-0.574076) 2.867522 / 4.565676 (-1.698154) 0.096523 / 0.424275 (-0.327752) 0.008777 / 0.007607 (0.001170) 0.716316 / 0.226044 (0.490272) 7.257574 / 2.268929 (4.988645) 3.141502 / 55.444624 (-52.303123) 2.480604 / 6.876477 (-4.395872) 2.530031 / 2.142072 (0.387958) 1.054274 / 4.805227 (-3.750953) 0.210781 / 6.500664 (-6.289883) 0.073837 / 0.075469 (-0.001632)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.607689 / 1.841788 (-0.234099) 23.856780 / 8.074308 (15.782472) 19.507196 / 10.191392 (9.315804) 0.232712 / 0.680424 (-0.447712) 0.027037 / 0.534201 (-0.507164) 0.466613 / 0.579283 (-0.112670) 0.571139 / 0.434364 (0.136775) 0.543109 / 0.540337 (0.002771) 0.785558 / 1.386936 (-0.601378)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.008104 / 0.011353 (-0.003249) 0.004923 / 0.011008 (-0.006086) 0.075093 / 0.038508 (0.036585) 0.075218 / 0.023109 (0.052109) 0.476615 / 0.275898 (0.200717) 0.506984 / 0.323480 (0.183504) 0.006371 / 0.007986 (-0.001614) 0.004818 / 0.004328 (0.000489) 0.075634 / 0.004250 (0.071383) 0.059513 / 0.037052 (0.022461) 0.523763 / 0.258489 (0.265274) 0.531858 / 0.293841 (0.238017) 0.048168 / 0.128546 (-0.080379) 0.014110 / 0.075646 (-0.061537) 0.086052 / 0.419271 (-0.333219) 0.058369 / 0.043533 (0.014836) 0.475537 / 0.255139 (0.220398) 0.509429 / 0.283200 (0.226229) 0.033924 / 0.141683 (-0.107758) 1.657490 / 1.452155 (0.205336) 1.762544 / 1.492716 (0.269828)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.263863 / 0.018006 (0.245857) 0.584468 / 0.000490 (0.583978) 0.007063 / 0.000200 (0.006863) 0.000181 / 0.000054 (0.000126)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.032229 / 0.037411 (-0.005183) 0.096750 / 0.014526 (0.082224) 0.117798 / 0.176557 (-0.058758) 0.173376 / 0.737135 (-0.563760) 0.117241 / 0.296338 (-0.179098)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.701935 / 0.215209 (0.486726) 6.544655 / 2.077655 (4.467001) 3.055531 / 1.504120 (1.551411) 2.896339 / 1.541195 (1.355144) 3.013157 / 1.468490 (1.544667) 0.852989 / 4.584777 (-3.731788) 5.399355 / 3.745712 (1.653643) 5.119811 / 5.269862 (-0.150051) 3.167269 / 4.565676 (-1.398407) 0.096962 / 0.424275 (-0.327313) 0.008843 / 0.007607 (0.001236) 0.776170 / 0.226044 (0.550125) 7.735093 / 2.268929 (5.466164) 3.792629 / 55.444624 (-51.651996) 3.249911 / 6.876477 (-3.626565) 3.235590 / 2.142072 (1.093517) 1.046426 / 4.805227 (-3.758801) 0.239854 / 6.500664 (-6.260810) 0.100648 / 0.075469 (0.025179)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.774488 / 1.841788 (-0.067300) 25.646958 / 8.074308 (17.572650) 23.181577 / 10.191392 (12.990185) 0.231948 / 0.680424 (-0.448476) 0.030147 / 0.534201 (-0.504054) 0.464161 / 0.579283 (-0.115122) 0.598980 / 0.434364 (0.164616) 0.571156 / 0.540337 (0.030819) 0.833221 / 1.386936 (-0.553715)

Copy link
Collaborator

@mariosasko mariosasko left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM!

@albertvillanova albertvillanova merged commit afc3c2b into main Sep 28, 2023
12 of 13 checks passed
@albertvillanova albertvillanova deleted the fix-ci-404 branch September 28, 2023 15:30
@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006010 / 0.011353 (-0.005343) 0.003662 / 0.011008 (-0.007346) 0.079971 / 0.038508 (0.041463) 0.066790 / 0.023109 (0.043681) 0.311387 / 0.275898 (0.035489) 0.346781 / 0.323480 (0.023301) 0.003500 / 0.007986 (-0.004485) 0.002831 / 0.004328 (-0.001498) 0.063238 / 0.004250 (0.058988) 0.056163 / 0.037052 (0.019110) 0.317456 / 0.258489 (0.058967) 0.356106 / 0.293841 (0.062265) 0.027358 / 0.128546 (-0.101188) 0.007906 / 0.075646 (-0.067741) 0.261779 / 0.419271 (-0.157492) 0.046385 / 0.043533 (0.002852) 0.312587 / 0.255139 (0.057448) 0.339513 / 0.283200 (0.056314) 0.021474 / 0.141683 (-0.120209) 1.418637 / 1.452155 (-0.033518) 1.510257 / 1.492716 (0.017540)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.211761 / 0.018006 (0.193755) 0.424387 / 0.000490 (0.423898) 0.002579 / 0.000200 (0.002379) 0.000065 / 0.000054 (0.000011)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.024038 / 0.037411 (-0.013374) 0.072524 / 0.014526 (0.057998) 0.083443 / 0.176557 (-0.093113) 0.144835 / 0.737135 (-0.592300) 0.084754 / 0.296338 (-0.211585)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.392423 / 0.215209 (0.177214) 3.927220 / 2.077655 (1.849565) 1.877853 / 1.504120 (0.373733) 1.699275 / 1.541195 (0.158081) 1.793144 / 1.468490 (0.324654) 0.503809 / 4.584777 (-4.080968) 3.052569 / 3.745712 (-0.693143) 2.907432 / 5.269862 (-2.362429) 1.811220 / 4.565676 (-2.754457) 0.057249 / 0.424275 (-0.367026) 0.006433 / 0.007607 (-0.001174) 0.463257 / 0.226044 (0.237213) 4.631038 / 2.268929 (2.362109) 2.315870 / 55.444624 (-53.128754) 2.000476 / 6.876477 (-4.876001) 2.043581 / 2.142072 (-0.098492) 0.588911 / 4.805227 (-4.216317) 0.125370 / 6.500664 (-6.375295) 0.061721 / 0.075469 (-0.013748)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.244486 / 1.841788 (-0.597301) 17.862422 / 8.074308 (9.788114) 13.890205 / 10.191392 (3.698813) 0.145467 / 0.680424 (-0.534957) 0.016856 / 0.534201 (-0.517345) 0.329357 / 0.579283 (-0.249926) 0.367550 / 0.434364 (-0.066814) 0.377541 / 0.540337 (-0.162796) 0.534087 / 1.386936 (-0.852849)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006030 / 0.011353 (-0.005323) 0.003650 / 0.011008 (-0.007359) 0.063300 / 0.038508 (0.024792) 0.058877 / 0.023109 (0.035767) 0.454662 / 0.275898 (0.178764) 0.489362 / 0.323480 (0.165882) 0.004856 / 0.007986 (-0.003130) 0.002909 / 0.004328 (-0.001420) 0.063356 / 0.004250 (0.059105) 0.047867 / 0.037052 (0.010814) 0.465461 / 0.258489 (0.206972) 0.506684 / 0.293841 (0.212843) 0.028599 / 0.128546 (-0.099947) 0.008076 / 0.075646 (-0.067570) 0.068695 / 0.419271 (-0.350576) 0.041487 / 0.043533 (-0.002045) 0.448676 / 0.255139 (0.193537) 0.471206 / 0.283200 (0.188007) 0.020401 / 0.141683 (-0.121282) 1.461181 / 1.452155 (0.009026) 1.517079 / 1.492716 (0.024363)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.222827 / 0.018006 (0.204821) 0.425074 / 0.000490 (0.424585) 0.004153 / 0.000200 (0.003953) 0.000081 / 0.000054 (0.000026)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.026980 / 0.037411 (-0.010431) 0.080786 / 0.014526 (0.066260) 0.092040 / 0.176557 (-0.084517) 0.146082 / 0.737135 (-0.591053) 0.092739 / 0.296338 (-0.203600)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.461663 / 0.215209 (0.246454) 4.604828 / 2.077655 (2.527173) 2.566926 / 1.504120 (1.062806) 2.394419 / 1.541195 (0.853224) 2.458375 / 1.468490 (0.989885) 0.505140 / 4.584777 (-4.079637) 3.155916 / 3.745712 (-0.589796) 3.014474 / 5.269862 (-2.255388) 1.900296 / 4.565676 (-2.665380) 0.058063 / 0.424275 (-0.366212) 0.006409 / 0.007607 (-0.001198) 0.541165 / 0.226044 (0.315120) 5.410700 / 2.268929 (3.141772) 3.010239 / 55.444624 (-52.434386) 2.668103 / 6.876477 (-4.208373) 2.730418 / 2.142072 (0.588346) 0.603471 / 4.805227 (-4.201756) 0.129852 / 6.500664 (-6.370812) 0.061507 / 0.075469 (-0.013962)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.355272 / 1.841788 (-0.486516) 18.170088 / 8.074308 (10.095780) 15.583855 / 10.191392 (5.392463) 0.146246 / 0.680424 (-0.534178) 0.018093 / 0.534201 (-0.516108) 0.331695 / 0.579283 (-0.247588) 0.380845 / 0.434364 (-0.053519) 0.388564 / 0.540337 (-0.151774) 0.551465 / 1.386936 (-0.835471)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants