Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix get_data_patterns for directories with the word data twice #6309

Merged
merged 6 commits into from
Oct 18, 2023

Conversation

albertvillanova
Copy link
Member

@albertvillanova albertvillanova commented Oct 17, 2023

Before the fix, get_data_patterns inferred wrongly the split name for paths with the word "data" twice:

  • For the URL path: hf://datasets/piuba-bigdata/articles_and_comments@f328d536425ae8fcac5d098c8408f437bffdd357/data/train-00001-of-00009.parquet (note the org name piuba-bigdata/ ending with data/)
  • The inferred split name was: articles_and_comments@f328d536425ae8fcac5d098c8408f437bffdd357/data/train instead of train

This PR fixes this issue by passing the base_path (hf://datasets/piuba-bigdata/articles_and_comments@f328d536425ae8fcac5d098c8408f437bffdd357) to _get_data_files_patterns and prepending it to the regex split pattern (data/{split}-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9].*\\..*).

Fix #6305.
Fix https://huggingface.co/datasets/piuba-bigdata/articles_and_comments/discussions/1

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006461 / 0.011353 (-0.004891) 0.004035 / 0.011008 (-0.006973) 0.085037 / 0.038508 (0.046529) 0.072434 / 0.023109 (0.049325) 0.308565 / 0.275898 (0.032667) 0.330455 / 0.323480 (0.006975) 0.003782 / 0.007986 (-0.004204) 0.004363 / 0.004328 (0.000034) 0.065242 / 0.004250 (0.060991) 0.056111 / 0.037052 (0.019058) 0.318008 / 0.258489 (0.059519) 0.357904 / 0.293841 (0.064063) 0.030702 / 0.128546 (-0.097844) 0.008741 / 0.075646 (-0.066905) 0.287666 / 0.419271 (-0.131605) 0.052281 / 0.043533 (0.008748) 0.306894 / 0.255139 (0.051755) 0.335739 / 0.283200 (0.052540) 0.023712 / 0.141683 (-0.117971) 1.492304 / 1.452155 (0.040149) 1.544540 / 1.492716 (0.051823)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.299419 / 0.018006 (0.281413) 0.547195 / 0.000490 (0.546705) 0.011571 / 0.000200 (0.011371) 0.000223 / 0.000054 (0.000168)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.028364 / 0.037411 (-0.009048) 0.081445 / 0.014526 (0.066919) 0.626670 / 0.176557 (0.450114) 0.159964 / 0.737135 (-0.577171) 0.100528 / 0.296338 (-0.195811)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.409915 / 0.215209 (0.194705) 4.108689 / 2.077655 (2.031034) 2.046247 / 1.504120 (0.542127) 1.851081 / 1.541195 (0.309887) 1.857857 / 1.468490 (0.389367) 0.493246 / 4.584777 (-4.091531) 3.581557 / 3.745712 (-0.164155) 3.456708 / 5.269862 (-1.813153) 2.051054 / 4.565676 (-2.514623) 0.057553 / 0.424275 (-0.366722) 0.007287 / 0.007607 (-0.000320) 0.493094 / 0.226044 (0.267050) 4.873051 / 2.268929 (2.604122) 2.515266 / 55.444624 (-52.929358) 2.144743 / 6.876477 (-4.731733) 2.159412 / 2.142072 (0.017340) 0.595627 / 4.805227 (-4.209601) 0.133773 / 6.500664 (-6.366891) 0.059965 / 0.075469 (-0.015504)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.259625 / 1.841788 (-0.582163) 19.030742 / 8.074308 (10.956434) 14.039246 / 10.191392 (3.847854) 0.168116 / 0.680424 (-0.512308) 0.018168 / 0.534201 (-0.516033) 0.391187 / 0.579283 (-0.188096) 0.420901 / 0.434364 (-0.013463) 0.465827 / 0.540337 (-0.074511) 0.718373 / 1.386936 (-0.668563)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006616 / 0.011353 (-0.004737) 0.004048 / 0.011008 (-0.006960) 0.064568 / 0.038508 (0.026060) 0.075933 / 0.023109 (0.052824) 0.396353 / 0.275898 (0.120455) 0.424159 / 0.323480 (0.100679) 0.005446 / 0.007986 (-0.002540) 0.003393 / 0.004328 (-0.000935) 0.064673 / 0.004250 (0.060422) 0.056983 / 0.037052 (0.019930) 0.402478 / 0.258489 (0.143989) 0.433240 / 0.293841 (0.139399) 0.032100 / 0.128546 (-0.096446) 0.008664 / 0.075646 (-0.066983) 0.070502 / 0.419271 (-0.348770) 0.047800 / 0.043533 (0.004267) 0.399506 / 0.255139 (0.144367) 0.418376 / 0.283200 (0.135176) 0.022654 / 0.141683 (-0.119029) 1.487280 / 1.452155 (0.035125) 1.543733 / 1.492716 (0.051017)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.317660 / 0.018006 (0.299654) 0.523922 / 0.000490 (0.523432) 0.007086 / 0.000200 (0.006886) 0.000109 / 0.000054 (0.000055)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.032381 / 0.037411 (-0.005030) 0.091636 / 0.014526 (0.077110) 0.104743 / 0.176557 (-0.071814) 0.158793 / 0.737135 (-0.578342) 0.103164 / 0.296338 (-0.193175)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.434081 / 0.215209 (0.218872) 4.329448 / 2.077655 (2.251794) 2.335855 / 1.504120 (0.831735) 2.177513 / 1.541195 (0.636319) 2.205406 / 1.468490 (0.736916) 0.500117 / 4.584777 (-4.084660) 3.693715 / 3.745712 (-0.051997) 3.305803 / 5.269862 (-1.964059) 2.048283 / 4.565676 (-2.517394) 0.058301 / 0.424275 (-0.365974) 0.007196 / 0.007607 (-0.000411) 0.512917 / 0.226044 (0.286873) 5.129283 / 2.268929 (2.860355) 2.836200 / 55.444624 (-52.608425) 2.499022 / 6.876477 (-4.377455) 2.652305 / 2.142072 (0.510232) 0.604219 / 4.805227 (-4.201008) 0.137310 / 6.500664 (-6.363354) 0.060880 / 0.075469 (-0.014589)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.346948 / 1.841788 (-0.494839) 19.499516 / 8.074308 (11.425208) 14.701500 / 10.191392 (4.510108) 0.168626 / 0.680424 (-0.511798) 0.020002 / 0.534201 (-0.514199) 0.394729 / 0.579283 (-0.184554) 0.428323 / 0.434364 (-0.006040) 0.481202 / 0.540337 (-0.059136) 0.684768 / 1.386936 (-0.702169)

@albertvillanova albertvillanova changed the title Fix get_data_patterns for direcotries with the word data twice Fix get_data_patterns for directories with the word data twice Oct 17, 2023
@HuggingFaceDocBuilderDev

The docs for this PR live here. All of your documentation changes will be reflected on that endpoint.

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.007033 / 0.011353 (-0.004320) 0.004411 / 0.011008 (-0.006597) 0.086146 / 0.038508 (0.047638) 0.086669 / 0.023109 (0.063560) 0.329145 / 0.275898 (0.053247) 0.348728 / 0.323480 (0.025248) 0.004404 / 0.007986 (-0.003582) 0.003656 / 0.004328 (-0.000673) 0.066120 / 0.004250 (0.061869) 0.059157 / 0.037052 (0.022105) 0.316537 / 0.258489 (0.058048) 0.369065 / 0.293841 (0.075224) 0.031921 / 0.128546 (-0.096625) 0.008877 / 0.075646 (-0.066770) 0.290068 / 0.419271 (-0.129204) 0.054007 / 0.043533 (0.010475) 0.308823 / 0.255139 (0.053684) 0.331189 / 0.283200 (0.047989) 0.027313 / 0.141683 (-0.114370) 1.486772 / 1.452155 (0.034617) 1.570359 / 1.492716 (0.077643)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.315991 / 0.018006 (0.297985) 0.577876 / 0.000490 (0.577386) 0.011207 / 0.000200 (0.011007) 0.000089 / 0.000054 (0.000035)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.031753 / 0.037411 (-0.005658) 0.089270 / 0.014526 (0.074744) 0.102518 / 0.176557 (-0.074038) 0.160260 / 0.737135 (-0.576875) 0.103365 / 0.296338 (-0.192973)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.405789 / 0.215209 (0.190580) 4.052740 / 2.077655 (1.975085) 2.052076 / 1.504120 (0.547956) 1.873966 / 1.541195 (0.332771) 1.997156 / 1.468490 (0.528665) 0.494975 / 4.584777 (-4.089802) 3.600007 / 3.745712 (-0.145705) 3.626459 / 5.269862 (-1.643403) 2.176927 / 4.565676 (-2.388750) 0.057894 / 0.424275 (-0.366381) 0.007469 / 0.007607 (-0.000138) 0.487422 / 0.226044 (0.261377) 4.868744 / 2.268929 (2.599815) 2.528707 / 55.444624 (-52.915918) 2.149520 / 6.876477 (-4.726956) 2.275491 / 2.142072 (0.133419) 0.589112 / 4.805227 (-4.216115) 0.136644 / 6.500664 (-6.364020) 0.062144 / 0.075469 (-0.013325)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.286625 / 1.841788 (-0.555163) 20.528128 / 8.074308 (12.453819) 15.290866 / 10.191392 (5.099474) 0.168380 / 0.680424 (-0.512044) 0.018908 / 0.534201 (-0.515293) 0.397210 / 0.579283 (-0.182073) 0.426133 / 0.434364 (-0.008231) 0.471754 / 0.540337 (-0.068584) 0.653343 / 1.386936 (-0.733593)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.007599 / 0.011353 (-0.003754) 0.004499 / 0.011008 (-0.006509) 0.066248 / 0.038508 (0.027740) 0.097704 / 0.023109 (0.074595) 0.414558 / 0.275898 (0.138660) 0.451088 / 0.323480 (0.127609) 0.005932 / 0.007986 (-0.002054) 0.003698 / 0.004328 (-0.000630) 0.065784 / 0.004250 (0.061534) 0.064777 / 0.037052 (0.027725) 0.443318 / 0.258489 (0.184829) 0.456896 / 0.293841 (0.163055) 0.033436 / 0.128546 (-0.095111) 0.008977 / 0.075646 (-0.066669) 0.072067 / 0.419271 (-0.347205) 0.049571 / 0.043533 (0.006038) 0.420325 / 0.255139 (0.165186) 0.443588 / 0.283200 (0.160388) 0.026723 / 0.141683 (-0.114960) 1.512566 / 1.452155 (0.060411) 1.647591 / 1.492716 (0.154875)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.326410 / 0.018006 (0.308404) 0.532878 / 0.000490 (0.532388) 0.006257 / 0.000200 (0.006057) 0.000104 / 0.000054 (0.000049)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.037289 / 0.037411 (-0.000122) 0.104940 / 0.014526 (0.090414) 0.113597 / 0.176557 (-0.062960) 0.170562 / 0.737135 (-0.566573) 0.114583 / 0.296338 (-0.181755)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.435530 / 0.215209 (0.220321) 4.332659 / 2.077655 (2.255005) 2.343576 / 1.504120 (0.839456) 2.190517 / 1.541195 (0.649322) 2.323101 / 1.468490 (0.854611) 0.493019 / 4.584777 (-4.091758) 3.686726 / 3.745712 (-0.058986) 3.437143 / 5.269862 (-1.832719) 2.167193 / 4.565676 (-2.398483) 0.059636 / 0.424275 (-0.364639) 0.007696 / 0.007607 (0.000089) 0.511159 / 0.226044 (0.285115) 5.119358 / 2.268929 (2.850429) 2.814934 / 55.444624 (-52.629690) 2.477871 / 6.876477 (-4.398606) 2.774473 / 2.142072 (0.632401) 0.590258 / 4.805227 (-4.214969) 0.135923 / 6.500664 (-6.364741) 0.062793 / 0.075469 (-0.012676)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.350192 / 1.841788 (-0.491596) 21.382135 / 8.074308 (13.307827) 16.024198 / 10.191392 (5.832806) 0.163623 / 0.680424 (-0.516801) 0.020749 / 0.534201 (-0.513452) 0.402578 / 0.579283 (-0.176705) 0.436569 / 0.434364 (0.002205) 0.477217 / 0.540337 (-0.063121) 0.682929 / 1.386936 (-0.704007)

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006671 / 0.011353 (-0.004681) 0.004176 / 0.011008 (-0.006832) 0.084095 / 0.038508 (0.045587) 0.076345 / 0.023109 (0.053236) 0.341201 / 0.275898 (0.065303) 0.381920 / 0.323480 (0.058440) 0.005578 / 0.007986 (-0.002408) 0.003535 / 0.004328 (-0.000794) 0.065227 / 0.004250 (0.060976) 0.054983 / 0.037052 (0.017931) 0.345938 / 0.258489 (0.087449) 0.398708 / 0.293841 (0.104867) 0.031029 / 0.128546 (-0.097518) 0.008643 / 0.075646 (-0.067004) 0.287286 / 0.419271 (-0.131985) 0.052424 / 0.043533 (0.008892) 0.342914 / 0.255139 (0.087775) 0.366982 / 0.283200 (0.083782) 0.024511 / 0.141683 (-0.117172) 1.510575 / 1.452155 (0.058421) 1.593214 / 1.492716 (0.100497)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.272703 / 0.018006 (0.254697) 0.583235 / 0.000490 (0.582746) 0.008467 / 0.000200 (0.008267) 0.000295 / 0.000054 (0.000240)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.029654 / 0.037411 (-0.007757) 0.085078 / 0.014526 (0.070552) 0.106391 / 0.176557 (-0.070165) 0.155790 / 0.737135 (-0.581345) 0.104835 / 0.296338 (-0.191503)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.408584 / 0.215209 (0.193375) 4.082557 / 2.077655 (2.004902) 2.054001 / 1.504120 (0.549881) 1.868470 / 1.541195 (0.327275) 1.950600 / 1.468490 (0.482110) 0.492572 / 4.584777 (-4.092205) 3.497105 / 3.745712 (-0.248607) 3.464596 / 5.269862 (-1.805265) 2.106399 / 4.565676 (-2.459278) 0.057413 / 0.424275 (-0.366862) 0.007449 / 0.007607 (-0.000158) 0.482900 / 0.226044 (0.256856) 4.844152 / 2.268929 (2.575223) 2.499930 / 55.444624 (-52.944695) 2.180396 / 6.876477 (-4.696081) 2.282830 / 2.142072 (0.140758) 0.581371 / 4.805227 (-4.223857) 0.134641 / 6.500664 (-6.366023) 0.063137 / 0.075469 (-0.012332)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.274291 / 1.841788 (-0.567496) 19.426189 / 8.074308 (11.351881) 14.292833 / 10.191392 (4.101441) 0.166321 / 0.680424 (-0.514102) 0.018419 / 0.534201 (-0.515782) 0.392433 / 0.579283 (-0.186850) 0.415128 / 0.434364 (-0.019236) 0.459274 / 0.540337 (-0.081063) 0.714668 / 1.386936 (-0.672268)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006740 / 0.011353 (-0.004613) 0.004283 / 0.011008 (-0.006725) 0.063845 / 0.038508 (0.025337) 0.077037 / 0.023109 (0.053927) 0.425103 / 0.275898 (0.149205) 0.445525 / 0.323480 (0.122046) 0.005755 / 0.007986 (-0.002230) 0.003589 / 0.004328 (-0.000739) 0.064515 / 0.004250 (0.060265) 0.057398 / 0.037052 (0.020346) 0.424781 / 0.258489 (0.166292) 0.452162 / 0.293841 (0.158321) 0.032164 / 0.128546 (-0.096382) 0.008660 / 0.075646 (-0.066986) 0.069873 / 0.419271 (-0.349399) 0.048100 / 0.043533 (0.004567) 0.409097 / 0.255139 (0.153958) 0.441533 / 0.283200 (0.158333) 0.024122 / 0.141683 (-0.117560) 1.503431 / 1.452155 (0.051277) 1.577518 / 1.492716 (0.084802)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.264433 / 0.018006 (0.246426) 0.553631 / 0.000490 (0.553141) 0.006354 / 0.000200 (0.006154) 0.000106 / 0.000054 (0.000051)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.033259 / 0.037411 (-0.004152) 0.094908 / 0.014526 (0.080382) 0.108238 / 0.176557 (-0.068318) 0.161354 / 0.737135 (-0.575781) 0.109073 / 0.296338 (-0.187265)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.434450 / 0.215209 (0.219241) 4.347501 / 2.077655 (2.269847) 2.362225 / 1.504120 (0.858105) 2.189285 / 1.541195 (0.648090) 2.288797 / 1.468490 (0.820307) 0.487782 / 4.584777 (-4.096995) 3.598732 / 3.745712 (-0.146980) 3.343263 / 5.269862 (-1.926599) 2.086256 / 4.565676 (-2.479420) 0.057838 / 0.424275 (-0.366437) 0.007412 / 0.007607 (-0.000195) 0.510098 / 0.226044 (0.284054) 5.088743 / 2.268929 (2.819814) 2.809105 / 55.444624 (-52.635519) 2.476005 / 6.876477 (-4.400471) 2.753785 / 2.142072 (0.611712) 0.585045 / 4.805227 (-4.220182) 0.131162 / 6.500664 (-6.369502) 0.060431 / 0.075469 (-0.015038)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.342149 / 1.841788 (-0.499639) 20.602369 / 8.074308 (12.528061) 14.973301 / 10.191392 (4.781909) 0.151655 / 0.680424 (-0.528769) 0.020793 / 0.534201 (-0.513408) 0.401657 / 0.579283 (-0.177626) 0.419845 / 0.434364 (-0.014519) 0.467225 / 0.540337 (-0.073113) 0.672469 / 1.386936 (-0.714467)

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.007006 / 0.011353 (-0.004346) 0.004282 / 0.011008 (-0.006726) 0.085413 / 0.038508 (0.046905) 0.085148 / 0.023109 (0.062038) 0.336543 / 0.275898 (0.060645) 0.367959 / 0.323480 (0.044479) 0.004337 / 0.007986 (-0.003648) 0.004535 / 0.004328 (0.000207) 0.065379 / 0.004250 (0.061128) 0.059993 / 0.037052 (0.022941) 0.343162 / 0.258489 (0.084673) 0.383766 / 0.293841 (0.089925) 0.031520 / 0.128546 (-0.097026) 0.008605 / 0.075646 (-0.067042) 0.288620 / 0.419271 (-0.130651) 0.053617 / 0.043533 (0.010084) 0.339389 / 0.255139 (0.084250) 0.350842 / 0.283200 (0.067642) 0.027816 / 0.141683 (-0.113867) 1.505500 / 1.452155 (0.053346) 1.566511 / 1.492716 (0.073795)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.272203 / 0.018006 (0.254197) 0.569729 / 0.000490 (0.569240) 0.010061 / 0.000200 (0.009861) 0.000328 / 0.000054 (0.000273)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.030015 / 0.037411 (-0.007396) 0.083991 / 0.014526 (0.069465) 0.099796 / 0.176557 (-0.076761) 0.159131 / 0.737135 (-0.578004) 0.099102 / 0.296338 (-0.197237)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.390076 / 0.215209 (0.174867) 3.897157 / 2.077655 (1.819502) 1.935912 / 1.504120 (0.431793) 1.815109 / 1.541195 (0.273915) 1.875041 / 1.468490 (0.406551) 0.482168 / 4.584777 (-4.102609) 3.556140 / 3.745712 (-0.189572) 3.528889 / 5.269862 (-1.740972) 2.132767 / 4.565676 (-2.432909) 0.057761 / 0.424275 (-0.366514) 0.007353 / 0.007607 (-0.000254) 0.464801 / 0.226044 (0.238757) 4.637301 / 2.268929 (2.368372) 2.362239 / 55.444624 (-53.082386) 2.049811 / 6.876477 (-4.826665) 2.143485 / 2.142072 (0.001412) 0.580929 / 4.805227 (-4.224299) 0.140252 / 6.500664 (-6.360412) 0.061352 / 0.075469 (-0.014117)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.257487 / 1.841788 (-0.584301) 19.453319 / 8.074308 (11.379011) 14.276332 / 10.191392 (4.084940) 0.166772 / 0.680424 (-0.513652) 0.018339 / 0.534201 (-0.515862) 0.393008 / 0.579283 (-0.186275) 0.420960 / 0.434364 (-0.013404) 0.464331 / 0.540337 (-0.076007) 0.717973 / 1.386936 (-0.668963)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.007255 / 0.011353 (-0.004098) 0.004230 / 0.011008 (-0.006778) 0.065191 / 0.038508 (0.026683) 0.085765 / 0.023109 (0.062655) 0.412464 / 0.275898 (0.136566) 0.446067 / 0.323480 (0.122587) 0.005875 / 0.007986 (-0.002110) 0.003700 / 0.004328 (-0.000628) 0.065430 / 0.004250 (0.061179) 0.060284 / 0.037052 (0.023231) 0.419984 / 0.258489 (0.161495) 0.453779 / 0.293841 (0.159938) 0.032595 / 0.128546 (-0.095952) 0.008873 / 0.075646 (-0.066773) 0.072124 / 0.419271 (-0.347148) 0.048072 / 0.043533 (0.004539) 0.408725 / 0.255139 (0.153586) 0.432485 / 0.283200 (0.149285) 0.024662 / 0.141683 (-0.117021) 1.540434 / 1.452155 (0.088279) 1.624768 / 1.492716 (0.132051)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.253220 / 0.018006 (0.235214) 0.555469 / 0.000490 (0.554980) 0.007765 / 0.000200 (0.007565) 0.000101 / 0.000054 (0.000046)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.032666 / 0.037411 (-0.004745) 0.094786 / 0.014526 (0.080260) 0.108219 / 0.176557 (-0.068337) 0.161546 / 0.737135 (-0.575589) 0.109828 / 0.296338 (-0.186510)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.437024 / 0.215209 (0.221815) 4.354065 / 2.077655 (2.276411) 2.336832 / 1.504120 (0.832713) 2.161959 / 1.541195 (0.620764) 2.257214 / 1.468490 (0.788724) 0.501576 / 4.584777 (-4.083201) 3.654292 / 3.745712 (-0.091420) 3.349504 / 5.269862 (-1.920357) 2.092998 / 4.565676 (-2.472679) 0.058740 / 0.424275 (-0.365535) 0.007420 / 0.007607 (-0.000187) 0.513443 / 0.226044 (0.287399) 5.151247 / 2.268929 (2.882319) 2.816036 / 55.444624 (-52.628589) 2.451863 / 6.876477 (-4.424613) 2.709908 / 2.142072 (0.567836) 0.597834 / 4.805227 (-4.207394) 0.136547 / 6.500664 (-6.364117) 0.062030 / 0.075469 (-0.013439)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.371412 / 1.841788 (-0.470375) 20.398981 / 8.074308 (12.324673) 14.932307 / 10.191392 (4.740915) 0.167796 / 0.680424 (-0.512628) 0.020740 / 0.534201 (-0.513461) 0.397162 / 0.579283 (-0.182121) 0.435493 / 0.434364 (0.001129) 0.477074 / 0.540337 (-0.063264) 0.697546 / 1.386936 (-0.689390)

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.007388 / 0.011353 (-0.003964) 0.004408 / 0.011008 (-0.006600) 0.098225 / 0.038508 (0.059717) 0.079368 / 0.023109 (0.056259) 0.381866 / 0.275898 (0.105968) 0.425942 / 0.323480 (0.102462) 0.005978 / 0.007986 (-0.002007) 0.003677 / 0.004328 (-0.000651) 0.075488 / 0.004250 (0.071238) 0.061725 / 0.037052 (0.024672) 0.389126 / 0.258489 (0.130637) 0.444099 / 0.293841 (0.150258) 0.036222 / 0.128546 (-0.092324) 0.009926 / 0.075646 (-0.065720) 0.336632 / 0.419271 (-0.082640) 0.060867 / 0.043533 (0.017335) 0.385437 / 0.255139 (0.130298) 0.416599 / 0.283200 (0.133399) 0.025118 / 0.141683 (-0.116565) 1.728073 / 1.452155 (0.275919) 1.847750 / 1.492716 (0.355033)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.263774 / 0.018006 (0.245768) 0.491242 / 0.000490 (0.490752) 0.013621 / 0.000200 (0.013421) 0.000333 / 0.000054 (0.000279)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.032911 / 0.037411 (-0.004500) 0.095738 / 0.014526 (0.081212) 0.110482 / 0.176557 (-0.066075) 0.175533 / 0.737135 (-0.561603) 0.109240 / 0.296338 (-0.187098)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.453967 / 0.215209 (0.238758) 4.489384 / 2.077655 (2.411730) 2.185496 / 1.504120 (0.681376) 1.979126 / 1.541195 (0.437931) 2.016364 / 1.468490 (0.547874) 0.565539 / 4.584777 (-4.019238) 4.106561 / 3.745712 (0.360849) 3.906402 / 5.269862 (-1.363460) 2.342186 / 4.565676 (-2.223491) 0.067815 / 0.424275 (-0.356460) 0.008663 / 0.007607 (0.001056) 0.543841 / 0.226044 (0.317796) 5.433491 / 2.268929 (3.164563) 2.785723 / 55.444624 (-52.658901) 2.355716 / 6.876477 (-4.520760) 2.397563 / 2.142072 (0.255491) 0.682587 / 4.805227 (-4.122641) 0.156548 / 6.500664 (-6.344116) 0.070654 / 0.075469 (-0.004815)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.475183 / 1.841788 (-0.366605) 21.353030 / 8.074308 (13.278722) 15.938324 / 10.191392 (5.746932) 0.167010 / 0.680424 (-0.513413) 0.020931 / 0.534201 (-0.513270) 0.464376 / 0.579283 (-0.114907) 0.472546 / 0.434364 (0.038182) 0.544645 / 0.540337 (0.004308) 0.752940 / 1.386936 (-0.633996)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.007359 / 0.011353 (-0.003994) 0.004276 / 0.011008 (-0.006732) 0.075345 / 0.038508 (0.036837) 0.080105 / 0.023109 (0.056995) 0.480456 / 0.275898 (0.204558) 0.514974 / 0.323480 (0.191494) 0.006087 / 0.007986 (-0.001899) 0.003717 / 0.004328 (-0.000611) 0.075067 / 0.004250 (0.070816) 0.063739 / 0.037052 (0.026686) 0.487569 / 0.258489 (0.229080) 0.530198 / 0.293841 (0.236357) 0.036056 / 0.128546 (-0.092491) 0.009606 / 0.075646 (-0.066041) 0.082343 / 0.419271 (-0.336929) 0.055488 / 0.043533 (0.011956) 0.484789 / 0.255139 (0.229650) 0.501918 / 0.283200 (0.218718) 0.025340 / 0.141683 (-0.116342) 1.784417 / 1.452155 (0.332262) 1.854202 / 1.492716 (0.361486)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.252476 / 0.018006 (0.234470) 0.484967 / 0.000490 (0.484478) 0.005471 / 0.000200 (0.005271) 0.000111 / 0.000054 (0.000057)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.037084 / 0.037411 (-0.000327) 0.106648 / 0.014526 (0.092122) 0.123393 / 0.176557 (-0.053164) 0.183088 / 0.737135 (-0.554047) 0.122572 / 0.296338 (-0.173767)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.516003 / 0.215209 (0.300793) 5.107748 / 2.077655 (3.030093) 2.778044 / 1.504120 (1.273924) 2.589944 / 1.541195 (1.048749) 2.649921 / 1.468490 (1.181431) 0.572783 / 4.584777 (-4.011994) 4.211331 / 3.745712 (0.465619) 3.738859 / 5.269862 (-1.531003) 2.331628 / 4.565676 (-2.234048) 0.067347 / 0.424275 (-0.356928) 0.008513 / 0.007607 (0.000905) 0.601056 / 0.226044 (0.375012) 5.990921 / 2.268929 (3.721992) 3.311544 / 55.444624 (-52.133081) 2.929850 / 6.876477 (-3.946627) 3.118741 / 2.142072 (0.976669) 0.685975 / 4.805227 (-4.119253) 0.155105 / 6.500664 (-6.345559) 0.069629 / 0.075469 (-0.005840)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.602367 / 1.841788 (-0.239421) 22.577072 / 8.074308 (14.502764) 17.049655 / 10.191392 (6.858263) 0.182412 / 0.680424 (-0.498011) 0.023137 / 0.534201 (-0.511064) 0.466988 / 0.579283 (-0.112295) 0.483887 / 0.434364 (0.049523) 0.556099 / 0.540337 (0.015761) 0.798332 / 1.386936 (-0.588604)

Copy link
Collaborator

@mariosasko mariosasko left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks for the fix!

@albertvillanova albertvillanova merged commit 3aeb078 into main Oct 18, 2023
13 checks passed
@albertvillanova albertvillanova deleted the fix-6305 branch October 18, 2023 13:50
@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.009086 / 0.011353 (-0.002267) 0.004755 / 0.011008 (-0.006253) 0.128866 / 0.038508 (0.090358) 0.086099 / 0.023109 (0.062990) 0.378079 / 0.275898 (0.102181) 0.487431 / 0.323480 (0.163951) 0.004712 / 0.007986 (-0.003274) 0.003622 / 0.004328 (-0.000706) 0.081214 / 0.004250 (0.076963) 0.057226 / 0.037052 (0.020174) 0.407655 / 0.258489 (0.149166) 0.448630 / 0.293841 (0.154789) 0.049051 / 0.128546 (-0.079495) 0.014537 / 0.075646 (-0.061110) 0.467343 / 0.419271 (0.048071) 0.070482 / 0.043533 (0.026949) 0.379664 / 0.255139 (0.124525) 0.464181 / 0.283200 (0.180981) 0.039973 / 0.141683 (-0.101710) 1.731164 / 1.452155 (0.279010) 1.886895 / 1.492716 (0.394178)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.251327 / 0.018006 (0.233321) 0.502670 / 0.000490 (0.502180) 0.012183 / 0.000200 (0.011984) 0.000111 / 0.000054 (0.000057)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.028892 / 0.037411 (-0.008519) 0.093789 / 0.014526 (0.079263) 0.104255 / 0.176557 (-0.072301) 0.170257 / 0.737135 (-0.566879) 0.115430 / 0.296338 (-0.180909)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.573745 / 0.215209 (0.358536) 5.873732 / 2.077655 (3.796077) 2.485188 / 1.504120 (0.981068) 2.018476 / 1.541195 (0.477282) 2.062765 / 1.468490 (0.594275) 0.913816 / 4.584777 (-3.670961) 5.362338 / 3.745712 (1.616626) 4.698758 / 5.269862 (-0.571103) 3.132973 / 4.565676 (-1.432703) 0.093594 / 0.424275 (-0.330681) 0.008359 / 0.007607 (0.000751) 0.693997 / 0.226044 (0.467953) 7.042645 / 2.268929 (4.773717) 3.196180 / 55.444624 (-52.248445) 2.384585 / 6.876477 (-4.491892) 2.301256 / 2.142072 (0.159183) 1.048025 / 4.805227 (-3.757202) 0.206931 / 6.500664 (-6.293733) 0.069401 / 0.075469 (-0.006068)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.598898 / 1.841788 (-0.242889) 22.963667 / 8.074308 (14.889359) 20.373688 / 10.191392 (10.182296) 0.239716 / 0.680424 (-0.440707) 0.040213 / 0.534201 (-0.493988) 0.503268 / 0.579283 (-0.076015) 0.630750 / 0.434364 (0.196386) 0.578007 / 0.540337 (0.037669) 0.789564 / 1.386936 (-0.597372)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.009129 / 0.011353 (-0.002224) 0.005453 / 0.011008 (-0.005555) 0.101040 / 0.038508 (0.062532) 0.099172 / 0.023109 (0.076062) 0.508453 / 0.275898 (0.232555) 0.570858 / 0.323480 (0.247378) 0.006584 / 0.007986 (-0.001401) 0.003800 / 0.004328 (-0.000528) 0.094349 / 0.004250 (0.090098) 0.064642 / 0.037052 (0.027590) 0.563008 / 0.258489 (0.304518) 0.625560 / 0.293841 (0.331719) 0.050121 / 0.128546 (-0.078426) 0.014183 / 0.075646 (-0.061463) 0.106564 / 0.419271 (-0.312707) 0.061030 / 0.043533 (0.017498) 0.522311 / 0.255139 (0.267172) 0.598356 / 0.283200 (0.315156) 0.042008 / 0.141683 (-0.099675) 1.879999 / 1.452155 (0.427844) 1.963879 / 1.492716 (0.471162)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.270573 / 0.018006 (0.252567) 0.554356 / 0.000490 (0.553866) 0.008145 / 0.000200 (0.007945) 0.000218 / 0.000054 (0.000163)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.031089 / 0.037411 (-0.006322) 0.099568 / 0.014526 (0.085043) 0.118304 / 0.176557 (-0.058253) 0.182991 / 0.737135 (-0.554144) 0.115874 / 0.296338 (-0.180465)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.615020 / 0.215209 (0.399811) 6.279740 / 2.077655 (4.202085) 2.882094 / 1.504120 (1.377974) 2.559265 / 1.541195 (1.018070) 2.639259 / 1.468490 (1.170769) 0.903727 / 4.584777 (-3.681050) 5.248555 / 3.745712 (1.502843) 4.817340 / 5.269862 (-0.452522) 3.056880 / 4.565676 (-1.508797) 0.096602 / 0.424275 (-0.327673) 0.008660 / 0.007607 (0.001053) 0.794347 / 0.226044 (0.568303) 7.625127 / 2.268929 (5.356198) 3.766826 / 55.444624 (-51.677798) 2.968254 / 6.876477 (-3.908223) 3.260595 / 2.142072 (1.118523) 1.066228 / 4.805227 (-3.739000) 0.207158 / 6.500664 (-6.293506) 0.076920 / 0.075469 (0.001451)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.741442 / 1.841788 (-0.100345) 23.499552 / 8.074308 (15.425244) 22.064966 / 10.191392 (11.873574) 0.239173 / 0.680424 (-0.441251) 0.032105 / 0.534201 (-0.502096) 0.484709 / 0.579283 (-0.094574) 0.583632 / 0.434364 (0.149268) 0.569018 / 0.540337 (0.028681) 0.815764 / 1.386936 (-0.571172)

lhoestq pushed a commit that referenced this pull request Oct 23, 2023
* Test get_data_patterns from directory with the word data twice

* Fix get_data_patterns

* Use glob_pattern_to_regex in entire xjoin

* Fix test by passing base_path as posix

* Use slash instead of xjoin for data files patterns

* Fix slash sep
lhoestq pushed a commit that referenced this pull request Oct 23, 2023
* Test get_data_patterns from directory with the word data twice

* Fix get_data_patterns

* Use glob_pattern_to_regex in entire xjoin

* Fix test by passing base_path as posix

* Use slash instead of xjoin for data files patterns

* Fix slash sep
albertvillanova added a commit that referenced this pull request Oct 24, 2023
* Test get_data_patterns from directory with the word data twice

* Fix get_data_patterns

* Use glob_pattern_to_regex in entire xjoin

* Fix test by passing base_path as posix

* Use slash instead of xjoin for data files patterns

* Fix slash sep
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

Cannot load dataset with 2.14.5: FileNotFound error
3 participants