Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support pyarrow 14.0.1 and fix vulnerability CVE-2023-47248 #6404

Merged
merged 10 commits into from
Nov 14, 2023

Conversation

albertvillanova
Copy link
Member

@albertvillanova albertvillanova commented Nov 13, 2023

Support pyarrow 14.0.1 and fix vulnerability CVE-2023-47248.

Fix #6396.

Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005974 / 0.011353 (-0.005378) 0.003707 / 0.011008 (-0.007301) 0.079908 / 0.038508 (0.041399) 0.036891 / 0.023109 (0.013781) 0.390355 / 0.275898 (0.114457) 0.424439 / 0.323480 (0.100960) 0.004936 / 0.007986 (-0.003050) 0.002886 / 0.004328 (-0.001442) 0.062793 / 0.004250 (0.058542) 0.054192 / 0.037052 (0.017139) 0.394697 / 0.258489 (0.136208) 0.437775 / 0.293841 (0.143934) 0.027596 / 0.128546 (-0.100950) 0.008006 / 0.075646 (-0.067640) 0.262515 / 0.419271 (-0.156757) 0.071014 / 0.043533 (0.027481) 0.392964 / 0.255139 (0.137825) 0.417449 / 0.283200 (0.134249) 0.021819 / 0.141683 (-0.119864) 1.458083 / 1.452155 (0.005929) 1.489042 / 1.492716 (-0.003674)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.230303 / 0.018006 (0.212297) 0.439361 / 0.000490 (0.438871) 0.010615 / 0.000200 (0.010415) 0.000303 / 0.000054 (0.000249)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.026600 / 0.037411 (-0.010811) 0.078605 / 0.014526 (0.064079) 0.088552 / 0.176557 (-0.088005) 0.149429 / 0.737135 (-0.587706) 0.087921 / 0.296338 (-0.208417)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.422063 / 0.215209 (0.206854) 4.201333 / 2.077655 (2.123678) 1.982284 / 1.504120 (0.478164) 1.779625 / 1.541195 (0.238431) 1.872454 / 1.468490 (0.403964) 0.502713 / 4.584777 (-4.082063) 3.103372 / 3.745712 (-0.642340) 3.030516 / 5.269862 (-2.239346) 1.909123 / 4.565676 (-2.656554) 0.057134 / 0.424275 (-0.367141) 0.006405 / 0.007607 (-0.001202) 0.494452 / 0.226044 (0.268408) 4.839345 / 2.268929 (2.570417) 2.424721 / 55.444624 (-53.019904) 2.028618 / 6.876477 (-4.847859) 2.082528 / 2.142072 (-0.059545) 0.587396 / 4.805227 (-4.217831) 0.125013 / 6.500664 (-6.375651) 0.061369 / 0.075469 (-0.014100)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.235799 / 1.841788 (-0.605989) 17.919977 / 8.074308 (9.845669) 13.868524 / 10.191392 (3.677132) 0.146058 / 0.680424 (-0.534366) 0.016826 / 0.534201 (-0.517375) 0.337512 / 0.579283 (-0.241771) 0.390263 / 0.434364 (-0.044101) 0.385336 / 0.540337 (-0.155001) 0.566004 / 1.386936 (-0.820932)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006537 / 0.011353 (-0.004816) 0.003787 / 0.011008 (-0.007221) 0.062568 / 0.038508 (0.024060) 0.066672 / 0.023109 (0.043563) 0.420447 / 0.275898 (0.144549) 0.457260 / 0.323480 (0.133780) 0.005005 / 0.007986 (-0.002981) 0.003037 / 0.004328 (-0.001291) 0.062095 / 0.004250 (0.057844) 0.049619 / 0.037052 (0.012567) 0.429935 / 0.258489 (0.171446) 0.471566 / 0.293841 (0.177725) 0.029688 / 0.128546 (-0.098859) 0.008028 / 0.075646 (-0.067619) 0.067915 / 0.419271 (-0.351356) 0.042066 / 0.043533 (-0.001467) 0.419275 / 0.255139 (0.164136) 0.444819 / 0.283200 (0.161619) 0.020100 / 0.141683 (-0.121583) 1.439057 / 1.452155 (-0.013098) 1.495657 / 1.492716 (0.002940)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.211148 / 0.018006 (0.193142) 0.423777 / 0.000490 (0.423288) 0.005892 / 0.000200 (0.005693) 0.000086 / 0.000054 (0.000032)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.026469 / 0.037411 (-0.010942) 0.081438 / 0.014526 (0.066912) 0.092007 / 0.176557 (-0.084550) 0.143433 / 0.737135 (-0.593703) 0.093039 / 0.296338 (-0.203300)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.410468 / 0.215209 (0.195259) 4.083783 / 2.077655 (2.006128) 2.234501 / 1.504120 (0.730381) 2.122323 / 1.541195 (0.581128) 2.255036 / 1.468490 (0.786546) 0.497712 / 4.584777 (-4.087065) 3.231187 / 3.745712 (-0.514525) 3.005399 / 5.269862 (-2.264463) 1.909516 / 4.565676 (-2.656161) 0.057529 / 0.424275 (-0.366746) 0.006475 / 0.007607 (-0.001132) 0.477282 / 0.226044 (0.251238) 4.799566 / 2.268929 (2.530637) 2.497070 / 55.444624 (-52.947554) 2.206359 / 6.876477 (-4.670118) 2.281614 / 2.142072 (0.139541) 0.581710 / 4.805227 (-4.223518) 0.121572 / 6.500664 (-6.379092) 0.058774 / 0.075469 (-0.016695)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.301880 / 1.841788 (-0.539908) 18.287330 / 8.074308 (10.213021) 14.939642 / 10.191392 (4.748250) 0.153941 / 0.680424 (-0.526483) 0.018345 / 0.534201 (-0.515856) 0.335986 / 0.579283 (-0.243297) 0.384264 / 0.434364 (-0.050099) 0.393115 / 0.540337 (-0.147223) 0.573343 / 1.386936 (-0.813594)

Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004805 / 0.011353 (-0.006548) 0.003261 / 0.011008 (-0.007747) 0.061585 / 0.038508 (0.023077) 0.030236 / 0.023109 (0.007127) 0.234767 / 0.275898 (-0.041131) 0.260478 / 0.323480 (-0.063002) 0.004121 / 0.007986 (-0.003865) 0.002525 / 0.004328 (-0.001803) 0.048213 / 0.004250 (0.043962) 0.045229 / 0.037052 (0.008176) 0.245143 / 0.258489 (-0.013346) 0.271818 / 0.293841 (-0.022023) 0.023594 / 0.128546 (-0.104952) 0.007335 / 0.075646 (-0.068311) 0.206246 / 0.419271 (-0.213026) 0.060783 / 0.043533 (0.017250) 0.238588 / 0.255139 (-0.016551) 0.274985 / 0.283200 (-0.008214) 0.018342 / 0.141683 (-0.123341) 1.135445 / 1.452155 (-0.316710) 1.184836 / 1.492716 (-0.307881)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.095603 / 0.018006 (0.077597) 0.290340 / 0.000490 (0.289850) 0.000219 / 0.000200 (0.000019) 0.000052 / 0.000054 (-0.000002)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.018804 / 0.037411 (-0.018607) 0.062525 / 0.014526 (0.047999) 0.074797 / 0.176557 (-0.101760) 0.120360 / 0.737135 (-0.616775) 0.076182 / 0.296338 (-0.220156)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.274981 / 0.215209 (0.059772) 2.684931 / 2.077655 (0.607276) 1.453845 / 1.504120 (-0.050275) 1.348361 / 1.541195 (-0.192834) 1.402820 / 1.468490 (-0.065670) 0.396311 / 4.584777 (-4.188466) 2.396314 / 3.745712 (-1.349398) 2.744379 / 5.269862 (-2.525482) 1.615268 / 4.565676 (-2.950409) 0.045920 / 0.424275 (-0.378355) 0.004844 / 0.007607 (-0.002763) 0.331132 / 0.226044 (0.105087) 3.325484 / 2.268929 (1.056556) 1.845734 / 55.444624 (-53.598890) 1.537268 / 6.876477 (-5.339209) 1.565155 / 2.142072 (-0.576918) 0.480032 / 4.805227 (-4.325195) 0.099917 / 6.500664 (-6.400747) 0.042276 / 0.075469 (-0.033193)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.973128 / 1.841788 (-0.868660) 12.643790 / 8.074308 (4.569482) 10.319586 / 10.191392 (0.128194) 0.131733 / 0.680424 (-0.548691) 0.014849 / 0.534201 (-0.519352) 0.270960 / 0.579283 (-0.308323) 0.265409 / 0.434364 (-0.168955) 0.309073 / 0.540337 (-0.231264) 0.466204 / 1.386936 (-0.920732)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005067 / 0.011353 (-0.006286) 0.003344 / 0.011008 (-0.007665) 0.047917 / 0.038508 (0.009409) 0.059556 / 0.023109 (0.036447) 0.275777 / 0.275898 (-0.000121) 0.299703 / 0.323480 (-0.023777) 0.004185 / 0.007986 (-0.003801) 0.002602 / 0.004328 (-0.001726) 0.048723 / 0.004250 (0.044472) 0.040686 / 0.037052 (0.003634) 0.281078 / 0.258489 (0.022589) 0.314725 / 0.293841 (0.020885) 0.024645 / 0.128546 (-0.103901) 0.007465 / 0.075646 (-0.068182) 0.053827 / 0.419271 (-0.365445) 0.033395 / 0.043533 (-0.010138) 0.273675 / 0.255139 (0.018536) 0.291261 / 0.283200 (0.008062) 0.019733 / 0.141683 (-0.121950) 1.134084 / 1.452155 (-0.318071) 1.189186 / 1.492716 (-0.303531)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.114960 / 0.018006 (0.096954) 0.308800 / 0.000490 (0.308311) 0.000237 / 0.000200 (0.000037) 0.000061 / 0.000054 (0.000006)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.021633 / 0.037411 (-0.015778) 0.073192 / 0.014526 (0.058666) 0.081598 / 0.176557 (-0.094959) 0.123085 / 0.737135 (-0.614050) 0.088677 / 0.296338 (-0.207661)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.300865 / 0.215209 (0.085656) 2.956847 / 2.077655 (0.879192) 1.613890 / 1.504120 (0.109770) 1.494074 / 1.541195 (-0.047121) 1.550345 / 1.468490 (0.081855) 0.408880 / 4.584777 (-4.175897) 2.422848 / 3.745712 (-1.322865) 2.690623 / 5.269862 (-2.579239) 1.546922 / 4.565676 (-3.018755) 0.047192 / 0.424275 (-0.377083) 0.004882 / 0.007607 (-0.002725) 0.360625 / 0.226044 (0.134580) 3.512678 / 2.268929 (1.243749) 1.978633 / 55.444624 (-53.465992) 1.686927 / 6.876477 (-5.189549) 1.748387 / 2.142072 (-0.393685) 0.480780 / 4.805227 (-4.324447) 0.099163 / 6.500664 (-6.401501) 0.041194 / 0.075469 (-0.034275)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.989087 / 1.841788 (-0.852700) 12.341951 / 8.074308 (4.267643) 11.109329 / 10.191392 (0.917936) 0.143329 / 0.680424 (-0.537095) 0.015565 / 0.534201 (-0.518636) 0.269532 / 0.579283 (-0.309751) 0.274899 / 0.434364 (-0.159465) 0.309308 / 0.540337 (-0.231030) 0.439651 / 1.386936 (-0.947285)

Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.007880 / 0.011353 (-0.003473) 0.004386 / 0.011008 (-0.006622) 0.099067 / 0.038508 (0.060559) 0.048036 / 0.023109 (0.024927) 0.368349 / 0.275898 (0.092451) 0.400052 / 0.323480 (0.076572) 0.004493 / 0.007986 (-0.003493) 0.003732 / 0.004328 (-0.000597) 0.076153 / 0.004250 (0.071902) 0.071024 / 0.037052 (0.033972) 0.379771 / 0.258489 (0.121282) 0.425005 / 0.293841 (0.131164) 0.036092 / 0.128546 (-0.092454) 0.009825 / 0.075646 (-0.065822) 0.340217 / 0.419271 (-0.079055) 0.089571 / 0.043533 (0.046038) 0.371426 / 0.255139 (0.116287) 0.397864 / 0.283200 (0.114664) 0.029440 / 0.141683 (-0.112243) 1.778100 / 1.452155 (0.325945) 1.857202 / 1.492716 (0.364486)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.254022 / 0.018006 (0.236015) 0.549844 / 0.000490 (0.549354) 0.012824 / 0.000200 (0.012624) 0.000378 / 0.000054 (0.000324)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.032334 / 0.037411 (-0.005077) 0.096101 / 0.014526 (0.081576) 0.117825 / 0.176557 (-0.058731) 0.179277 / 0.737135 (-0.557858) 0.112614 / 0.296338 (-0.183724)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.455051 / 0.215209 (0.239842) 4.537086 / 2.077655 (2.459431) 2.198662 / 1.504120 (0.694542) 1.982772 / 1.541195 (0.441578) 2.058673 / 1.468490 (0.590182) 0.569268 / 4.584777 (-4.015509) 4.095000 / 3.745712 (0.349288) 3.891680 / 5.269862 (-1.378182) 2.345129 / 4.565676 (-2.220548) 0.066974 / 0.424275 (-0.357301) 0.008557 / 0.007607 (0.000950) 0.545290 / 0.226044 (0.319245) 5.453377 / 2.268929 (3.184448) 2.858688 / 55.444624 (-52.585936) 2.502367 / 6.876477 (-4.374109) 2.515658 / 2.142072 (0.373586) 0.681423 / 4.805227 (-4.123804) 0.155975 / 6.500664 (-6.344689) 0.070872 / 0.075469 (-0.004597)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.474674 / 1.841788 (-0.367114) 21.653619 / 8.074308 (13.579311) 16.277111 / 10.191392 (6.085719) 0.166445 / 0.680424 (-0.513979) 0.021676 / 0.534201 (-0.512525) 0.466949 / 0.579283 (-0.112334) 0.500953 / 0.434364 (0.066589) 0.540413 / 0.540337 (0.000076) 0.792989 / 1.386936 (-0.593947)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.007633 / 0.011353 (-0.003720) 0.004468 / 0.011008 (-0.006540) 0.075573 / 0.038508 (0.037065) 0.081174 / 0.023109 (0.058064) 0.440741 / 0.275898 (0.164843) 0.489493 / 0.323480 (0.166013) 0.006180 / 0.007986 (-0.001805) 0.003693 / 0.004328 (-0.000636) 0.074692 / 0.004250 (0.070441) 0.061732 / 0.037052 (0.024680) 0.460391 / 0.258489 (0.201902) 0.505575 / 0.293841 (0.211734) 0.037692 / 0.128546 (-0.090854) 0.009870 / 0.075646 (-0.065776) 0.083830 / 0.419271 (-0.335442) 0.056255 / 0.043533 (0.012723) 0.439330 / 0.255139 (0.184191) 0.475598 / 0.283200 (0.192399) 0.026626 / 0.141683 (-0.115056) 1.794410 / 1.452155 (0.342255) 1.882510 / 1.492716 (0.389794)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.236194 / 0.018006 (0.218187) 0.486109 / 0.000490 (0.485619) 0.006652 / 0.000200 (0.006453) 0.000108 / 0.000054 (0.000053)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.037277 / 0.037411 (-0.000134) 0.108904 / 0.014526 (0.094378) 0.122699 / 0.176557 (-0.053857) 0.182388 / 0.737135 (-0.554747) 0.122826 / 0.296338 (-0.173512)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.485989 / 0.215209 (0.270780) 4.913263 / 2.077655 (2.835609) 2.571618 / 1.504120 (1.067498) 2.401248 / 1.541195 (0.860054) 2.501117 / 1.468490 (1.032627) 0.570989 / 4.584777 (-4.013788) 4.107420 / 3.745712 (0.361708) 3.814977 / 5.269862 (-1.454885) 2.282539 / 4.565676 (-2.283138) 0.067765 / 0.424275 (-0.356511) 0.008561 / 0.007607 (0.000954) 0.584515 / 0.226044 (0.358471) 5.817821 / 2.268929 (3.548893) 3.211202 / 55.444624 (-52.233422) 2.764480 / 6.876477 (-4.111996) 2.807301 / 2.142072 (0.665229) 0.676882 / 4.805227 (-4.128346) 0.150124 / 6.500664 (-6.350540) 0.067205 / 0.075469 (-0.008265)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.594945 / 1.841788 (-0.246843) 22.533511 / 8.074308 (14.459203) 17.099693 / 10.191392 (6.908301) 0.195954 / 0.680424 (-0.484470) 0.023968 / 0.534201 (-0.510233) 0.471337 / 0.579283 (-0.107946) 0.491017 / 0.434364 (0.056653) 0.561342 / 0.540337 (0.021004) 0.797116 / 1.386936 (-0.589820)

Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006235 / 0.011353 (-0.005118) 0.003688 / 0.011008 (-0.007321) 0.080801 / 0.038508 (0.042293) 0.036243 / 0.023109 (0.013134) 0.312173 / 0.275898 (0.036275) 0.346239 / 0.323480 (0.022759) 0.003429 / 0.007986 (-0.004556) 0.003806 / 0.004328 (-0.000523) 0.063236 / 0.004250 (0.058986) 0.053229 / 0.037052 (0.016177) 0.315184 / 0.258489 (0.056695) 0.360124 / 0.293841 (0.066283) 0.027447 / 0.128546 (-0.101099) 0.008029 / 0.075646 (-0.067618) 0.262766 / 0.419271 (-0.156505) 0.068421 / 0.043533 (0.024888) 0.309028 / 0.255139 (0.053889) 0.345859 / 0.283200 (0.062659) 0.021388 / 0.141683 (-0.120295) 1.452807 / 1.452155 (0.000652) 1.502803 / 1.492716 (0.010087)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.211297 / 0.018006 (0.193291) 0.423364 / 0.000490 (0.422874) 0.004574 / 0.000200 (0.004374) 0.000272 / 0.000054 (0.000218)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.023805 / 0.037411 (-0.013606) 0.072309 / 0.014526 (0.057783) 0.083274 / 0.176557 (-0.093283) 0.143594 / 0.737135 (-0.593541) 0.083777 / 0.296338 (-0.212561)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.415691 / 0.215209 (0.200482) 4.128621 / 2.077655 (2.050967) 1.931128 / 1.504120 (0.427008) 1.737486 / 1.541195 (0.196292) 1.806314 / 1.468490 (0.337823) 0.501405 / 4.584777 (-4.083372) 3.082042 / 3.745712 (-0.663670) 2.980224 / 5.269862 (-2.289637) 1.879780 / 4.565676 (-2.685897) 0.057546 / 0.424275 (-0.366729) 0.006422 / 0.007607 (-0.001186) 0.479813 / 0.226044 (0.253768) 4.854497 / 2.268929 (2.585568) 2.529674 / 55.444624 (-52.914950) 2.283041 / 6.876477 (-4.593436) 2.377173 / 2.142072 (0.235101) 0.589654 / 4.805227 (-4.215573) 0.126190 / 6.500664 (-6.374474) 0.062391 / 0.075469 (-0.013079)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.232023 / 1.841788 (-0.609764) 17.576621 / 8.074308 (9.502313) 13.437075 / 10.191392 (3.245683) 0.143367 / 0.680424 (-0.537057) 0.016638 / 0.534201 (-0.517563) 0.332806 / 0.579283 (-0.246477) 0.356029 / 0.434364 (-0.078335) 0.385610 / 0.540337 (-0.154727) 0.563268 / 1.386936 (-0.823668)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006293 / 0.011353 (-0.005060) 0.003692 / 0.011008 (-0.007317) 0.062075 / 0.038508 (0.023567) 0.062104 / 0.023109 (0.038995) 0.407478 / 0.275898 (0.131580) 0.434982 / 0.323480 (0.111502) 0.004889 / 0.007986 (-0.003097) 0.002915 / 0.004328 (-0.001413) 0.061426 / 0.004250 (0.057176) 0.048027 / 0.037052 (0.010974) 0.410504 / 0.258489 (0.152015) 0.435383 / 0.293841 (0.141542) 0.029419 / 0.128546 (-0.099127) 0.008275 / 0.075646 (-0.067371) 0.067796 / 0.419271 (-0.351476) 0.041696 / 0.043533 (-0.001837) 0.398882 / 0.255139 (0.143743) 0.419480 / 0.283200 (0.136281) 0.021519 / 0.141683 (-0.120164) 1.436961 / 1.452155 (-0.015194) 1.507961 / 1.492716 (0.015245)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.223190 / 0.018006 (0.205184) 0.416281 / 0.000490 (0.415791) 0.003370 / 0.000200 (0.003170) 0.000080 / 0.000054 (0.000026)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.025923 / 0.037411 (-0.011488) 0.079989 / 0.014526 (0.065463) 0.091289 / 0.176557 (-0.085268) 0.141212 / 0.737135 (-0.595923) 0.091717 / 0.296338 (-0.204622)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.434640 / 0.215209 (0.219431) 4.326154 / 2.077655 (2.248500) 2.364845 / 1.504120 (0.860725) 2.194040 / 1.541195 (0.652846) 2.276665 / 1.468490 (0.808175) 0.501879 / 4.584777 (-4.082898) 3.073307 / 3.745712 (-0.672405) 2.893823 / 5.269862 (-2.376039) 1.820594 / 4.565676 (-2.745083) 0.057595 / 0.424275 (-0.366680) 0.006516 / 0.007607 (-0.001091) 0.513633 / 0.226044 (0.287589) 5.104799 / 2.268929 (2.835870) 2.845025 / 55.444624 (-52.599599) 2.513852 / 6.876477 (-4.362624) 2.561044 / 2.142072 (0.418972) 0.582711 / 4.805227 (-4.222516) 0.120631 / 6.500664 (-6.380034) 0.056738 / 0.075469 (-0.018731)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.303370 / 1.841788 (-0.538418) 18.023568 / 8.074308 (9.949259) 14.637973 / 10.191392 (4.446581) 0.145182 / 0.680424 (-0.535241) 0.018061 / 0.534201 (-0.516140) 0.333219 / 0.579283 (-0.246065) 0.373184 / 0.434364 (-0.061180) 0.388176 / 0.540337 (-0.152161) 0.564752 / 1.386936 (-0.822184)

Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.007230 / 0.011353 (-0.004122) 0.003727 / 0.011008 (-0.007281) 0.078893 / 0.038508 (0.040385) 0.042600 / 0.023109 (0.019491) 0.301905 / 0.275898 (0.026007) 0.328478 / 0.323480 (0.004998) 0.003960 / 0.007986 (-0.004026) 0.004530 / 0.004328 (0.000201) 0.059446 / 0.004250 (0.055196) 0.061241 / 0.037052 (0.024189) 0.301878 / 0.258489 (0.043389) 0.340935 / 0.293841 (0.047095) 0.030559 / 0.128546 (-0.097988) 0.008016 / 0.075646 (-0.067630) 0.305174 / 0.419271 (-0.114097) 0.080374 / 0.043533 (0.036842) 0.307162 / 0.255139 (0.052023) 0.342459 / 0.283200 (0.059259) 0.025881 / 0.141683 (-0.115801) 1.443311 / 1.452155 (-0.008844) 1.631060 / 1.492716 (0.138344)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.242676 / 0.018006 (0.224670) 0.463941 / 0.000490 (0.463451) 0.007762 / 0.000200 (0.007562) 0.000582 / 0.000054 (0.000527)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.027334 / 0.037411 (-0.010077) 0.078910 / 0.014526 (0.064384) 0.091399 / 0.176557 (-0.085157) 0.143318 / 0.737135 (-0.593818) 0.089761 / 0.296338 (-0.206577)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.463002 / 0.215209 (0.247793) 4.627235 / 2.077655 (2.549580) 2.256699 / 1.504120 (0.752579) 2.057615 / 1.541195 (0.516421) 2.126424 / 1.468490 (0.657934) 0.571969 / 4.584777 (-4.012808) 4.130260 / 3.745712 (0.384548) 3.833521 / 5.269862 (-1.436341) 2.320141 / 4.565676 (-2.245535) 0.067587 / 0.424275 (-0.356688) 0.008452 / 0.007607 (0.000845) 0.546478 / 0.226044 (0.320433) 5.070678 / 2.268929 (2.801750) 2.325387 / 55.444624 (-53.119237) 2.044041 / 6.876477 (-4.832435) 2.019714 / 2.142072 (-0.122358) 0.563589 / 4.805227 (-4.241639) 0.135269 / 6.500664 (-6.365395) 0.058208 / 0.075469 (-0.017261)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.283156 / 1.841788 (-0.558631) 18.617776 / 8.074308 (10.543468) 13.360700 / 10.191392 (3.169308) 0.160001 / 0.680424 (-0.520423) 0.021538 / 0.534201 (-0.512663) 0.384169 / 0.579283 (-0.195114) 0.407517 / 0.434364 (-0.026847) 0.427295 / 0.540337 (-0.113042) 0.655288 / 1.386936 (-0.731648)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006854 / 0.011353 (-0.004499) 0.003442 / 0.011008 (-0.007566) 0.060622 / 0.038508 (0.022114) 0.074649 / 0.023109 (0.051540) 0.341733 / 0.275898 (0.065835) 0.360096 / 0.323480 (0.036616) 0.006235 / 0.007986 (-0.001751) 0.003447 / 0.004328 (-0.000882) 0.057301 / 0.004250 (0.053051) 0.059022 / 0.037052 (0.021970) 0.369523 / 0.258489 (0.111034) 0.386280 / 0.293841 (0.092439) 0.034319 / 0.128546 (-0.094228) 0.008291 / 0.075646 (-0.067355) 0.070403 / 0.419271 (-0.348868) 0.050433 / 0.043533 (0.006901) 0.347262 / 0.255139 (0.092123) 0.380543 / 0.283200 (0.097343) 0.024492 / 0.141683 (-0.117191) 1.446721 / 1.452155 (-0.005433) 1.541614 / 1.492716 (0.048898)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.226148 / 0.018006 (0.208142) 0.442150 / 0.000490 (0.441660) 0.004997 / 0.000200 (0.004797) 0.000096 / 0.000054 (0.000041)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.032866 / 0.037411 (-0.004546) 0.088097 / 0.014526 (0.073571) 0.102178 / 0.176557 (-0.074379) 0.151129 / 0.737135 (-0.586006) 0.103953 / 0.296338 (-0.192386)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.376701 / 0.215209 (0.161492) 3.886997 / 2.077655 (1.809342) 2.027143 / 1.504120 (0.523023) 1.808647 / 1.541195 (0.267453) 1.867664 / 1.468490 (0.399173) 0.459487 / 4.584777 (-4.125290) 3.640801 / 3.745712 (-0.104911) 3.242512 / 5.269862 (-2.027350) 1.889174 / 4.565676 (-2.676503) 0.052415 / 0.424275 (-0.371860) 0.007479 / 0.007607 (-0.000128) 0.457706 / 0.226044 (0.231662) 4.815041 / 2.268929 (2.546112) 2.542470 / 55.444624 (-52.902154) 2.137084 / 6.876477 (-4.739392) 2.122867 / 2.142072 (-0.019205) 0.553756 / 4.805227 (-4.251471) 0.118902 / 6.500664 (-6.381763) 0.058149 / 0.075469 (-0.017320)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.272615 / 1.841788 (-0.569173) 19.455709 / 8.074308 (11.381401) 14.111693 / 10.191392 (3.920301) 0.165741 / 0.680424 (-0.514683) 0.023680 / 0.534201 (-0.510521) 0.431458 / 0.579283 (-0.147825) 0.433612 / 0.434364 (-0.000752) 0.465615 / 0.540337 (-0.074722) 0.678177 / 1.386936 (-0.708759)

Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004870 / 0.011353 (-0.006483) 0.002834 / 0.011008 (-0.008175) 0.061359 / 0.038508 (0.022851) 0.031286 / 0.023109 (0.008177) 0.236701 / 0.275898 (-0.039197) 0.258139 / 0.323480 (-0.065341) 0.002943 / 0.007986 (-0.005043) 0.002989 / 0.004328 (-0.001339) 0.048046 / 0.004250 (0.043796) 0.044927 / 0.037052 (0.007874) 0.241339 / 0.258489 (-0.017151) 0.273912 / 0.293841 (-0.019929) 0.023427 / 0.128546 (-0.105119) 0.007251 / 0.075646 (-0.068395) 0.202730 / 0.419271 (-0.216542) 0.056223 / 0.043533 (0.012691) 0.239908 / 0.255139 (-0.015231) 0.254723 / 0.283200 (-0.028476) 0.018223 / 0.141683 (-0.123460) 1.119691 / 1.452155 (-0.332464) 1.163802 / 1.492716 (-0.328915)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.091303 / 0.018006 (0.073297) 0.302097 / 0.000490 (0.301607) 0.000214 / 0.000200 (0.000014) 0.000044 / 0.000054 (-0.000011)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.018201 / 0.037411 (-0.019210) 0.062092 / 0.014526 (0.047566) 0.074806 / 0.176557 (-0.101751) 0.119625 / 0.737135 (-0.617510) 0.074680 / 0.296338 (-0.221659)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.281140 / 0.215209 (0.065931) 2.752094 / 2.077655 (0.674439) 1.436813 / 1.504120 (-0.067307) 1.312947 / 1.541195 (-0.228247) 1.331022 / 1.468490 (-0.137468) 0.396579 / 4.584777 (-4.188198) 2.406181 / 3.745712 (-1.339531) 2.597180 / 5.269862 (-2.672682) 1.565879 / 4.565676 (-2.999798) 0.046330 / 0.424275 (-0.377945) 0.004776 / 0.007607 (-0.002831) 0.339681 / 0.226044 (0.113637) 3.279533 / 2.268929 (1.010605) 1.793352 / 55.444624 (-53.651272) 1.493910 / 6.876477 (-5.382567) 1.514494 / 2.142072 (-0.627579) 0.467955 / 4.805227 (-4.337272) 0.097764 / 6.500664 (-6.402900) 0.041659 / 0.075469 (-0.033810)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.943204 / 1.841788 (-0.898583) 11.350848 / 8.074308 (3.276540) 10.169944 / 10.191392 (-0.021448) 0.130882 / 0.680424 (-0.549542) 0.013804 / 0.534201 (-0.520397) 0.269107 / 0.579283 (-0.310177) 0.261685 / 0.434364 (-0.172679) 0.305610 / 0.540337 (-0.234727) 0.430586 / 1.386936 (-0.956350)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004835 / 0.011353 (-0.006518) 0.002530 / 0.011008 (-0.008479) 0.047383 / 0.038508 (0.008875) 0.052559 / 0.023109 (0.029450) 0.265015 / 0.275898 (-0.010883) 0.286955 / 0.323480 (-0.036525) 0.003931 / 0.007986 (-0.004054) 0.002038 / 0.004328 (-0.002290) 0.047458 / 0.004250 (0.043207) 0.038257 / 0.037052 (0.001205) 0.270569 / 0.258489 (0.012080) 0.298968 / 0.293841 (0.005127) 0.024615 / 0.128546 (-0.103932) 0.006969 / 0.075646 (-0.068677) 0.052361 / 0.419271 (-0.366911) 0.032701 / 0.043533 (-0.010832) 0.269126 / 0.255139 (0.013987) 0.285934 / 0.283200 (0.002735) 0.018121 / 0.141683 (-0.123562) 1.129796 / 1.452155 (-0.322359) 1.272831 / 1.492716 (-0.219885)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.092058 / 0.018006 (0.074051) 0.303544 / 0.000490 (0.303054) 0.000232 / 0.000200 (0.000032) 0.000043 / 0.000054 (-0.000011)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.020983 / 0.037411 (-0.016428) 0.069798 / 0.014526 (0.055272) 0.081410 / 0.176557 (-0.095146) 0.120403 / 0.737135 (-0.616732) 0.082813 / 0.296338 (-0.213525)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.295943 / 0.215209 (0.080734) 2.895761 / 2.077655 (0.818106) 1.583534 / 1.504120 (0.079414) 1.458397 / 1.541195 (-0.082798) 1.492113 / 1.468490 (0.023623) 0.402364 / 4.584777 (-4.182413) 2.469777 / 3.745712 (-1.275935) 2.565262 / 5.269862 (-2.704599) 1.525914 / 4.565676 (-3.039763) 0.047168 / 0.424275 (-0.377107) 0.004800 / 0.007607 (-0.002808) 0.348356 / 0.226044 (0.122311) 3.463184 / 2.268929 (1.194255) 1.930240 / 55.444624 (-53.514385) 1.644312 / 6.876477 (-5.232165) 1.625477 / 2.142072 (-0.516596) 0.480781 / 4.805227 (-4.324446) 0.098431 / 6.500664 (-6.402233) 0.041071 / 0.075469 (-0.034398)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.973633 / 1.841788 (-0.868154) 11.952261 / 8.074308 (3.877953) 11.038222 / 10.191392 (0.846830) 0.142755 / 0.680424 (-0.537669) 0.015389 / 0.534201 (-0.518812) 0.274144 / 0.579283 (-0.305139) 0.282319 / 0.434364 (-0.152045) 0.314330 / 0.540337 (-0.226007) 0.435315 / 1.386936 (-0.951621)

@albertvillanova
Copy link
Member Author

Copy link
Member

@lhoestq lhoestq left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks for the fix ! Maybe add pyarrow-hotfix as a requirement before merging

With this change it won't be possible to load old datasets with ArrayND types saved as Parquet or Arrow anymore, but I don't think we can do anything to avoid that.

setup.py Outdated
# Minimum 8.0.0 to be able to use .to_reader()
"pyarrow>=8.0.0",
# Minimum 14.0.1 to fix vulnerability CVE-2023-47248
"pyarrow>=9.0.0", # TODO: maximum version allowed by Apache Beam
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We can require pyarrow-hotfix<1 and import pyarrox_hotfix to fix CVE-2023-47248 without requiring 14.0.1

if: ${{ matrix.deps_versions != 'deps-latest' }}
run: pip install pyarrow==8.0.0 huggingface-hub==0.18.0 transformers dill==0.3.1.1
run: pip install pyarrow==14.0.1 huggingface-hub==0.18.0 transformers dill==0.3.1.1
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
run: pip install pyarrow==14.0.1 huggingface-hub==0.18.0 transformers dill==0.3.1.1
run: pip install pyarrow==9.0.0 huggingface-hub==0.18.0 transformers dill==0.3.1.1

@lhoestq
Copy link
Member

lhoestq commented Nov 13, 2023

Let's do a new release once this is merged ? cc @mariosasko as well let us know if the fix sounds good to you

@mariosasko
Copy link
Collaborator

@lhoestq Yes, this sounds good to me!

Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004932 / 0.011353 (-0.006421) 0.002956 / 0.011008 (-0.008052) 0.061999 / 0.038508 (0.023491) 0.030174 / 0.023109 (0.007065) 0.241483 / 0.275898 (-0.034415) 0.261578 / 0.323480 (-0.061902) 0.002881 / 0.007986 (-0.005105) 0.002451 / 0.004328 (-0.001878) 0.048176 / 0.004250 (0.043925) 0.045028 / 0.037052 (0.007976) 0.244304 / 0.258489 (-0.014185) 0.275834 / 0.293841 (-0.018007) 0.023312 / 0.128546 (-0.105234) 0.007361 / 0.075646 (-0.068286) 0.204433 / 0.419271 (-0.214838) 0.054561 / 0.043533 (0.011028) 0.236902 / 0.255139 (-0.018237) 0.269358 / 0.283200 (-0.013842) 0.017736 / 0.141683 (-0.123947) 1.112444 / 1.452155 (-0.339711) 1.170260 / 1.492716 (-0.322456)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.093081 / 0.018006 (0.075074) 0.311470 / 0.000490 (0.310981) 0.000212 / 0.000200 (0.000013) 0.000043 / 0.000054 (-0.000011)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.018654 / 0.037411 (-0.018757) 0.063239 / 0.014526 (0.048714) 0.073759 / 0.176557 (-0.102798) 0.120279 / 0.737135 (-0.616857) 0.076214 / 0.296338 (-0.220124)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.287219 / 0.215209 (0.072010) 2.765378 / 2.077655 (0.687723) 1.459733 / 1.504120 (-0.044387) 1.325999 / 1.541195 (-0.215196) 1.349957 / 1.468490 (-0.118533) 0.413093 / 4.584777 (-4.171684) 2.394758 / 3.745712 (-1.350954) 2.633916 / 5.269862 (-2.635945) 1.621629 / 4.565676 (-2.944047) 0.046839 / 0.424275 (-0.377436) 0.004786 / 0.007607 (-0.002822) 0.336261 / 0.226044 (0.110217) 3.348196 / 2.268929 (1.079267) 1.853050 / 55.444624 (-53.591574) 1.543926 / 6.876477 (-5.332551) 1.573675 / 2.142072 (-0.568398) 0.484088 / 4.805227 (-4.321139) 0.100820 / 6.500664 (-6.399845) 0.042194 / 0.075469 (-0.033275)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.945186 / 1.841788 (-0.896601) 11.859855 / 8.074308 (3.785547) 10.459883 / 10.191392 (0.268491) 0.142024 / 0.680424 (-0.538400) 0.013882 / 0.534201 (-0.520319) 0.269584 / 0.579283 (-0.309699) 0.264353 / 0.434364 (-0.170011) 0.307988 / 0.540337 (-0.232349) 0.423655 / 1.386936 (-0.963281)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004891 / 0.011353 (-0.006461) 0.003087 / 0.011008 (-0.007921) 0.048206 / 0.038508 (0.009697) 0.058570 / 0.023109 (0.035461) 0.268552 / 0.275898 (-0.007346) 0.287839 / 0.323480 (-0.035641) 0.004044 / 0.007986 (-0.003942) 0.002388 / 0.004328 (-0.001940) 0.048186 / 0.004250 (0.043935) 0.038719 / 0.037052 (0.001667) 0.271940 / 0.258489 (0.013451) 0.299716 / 0.293841 (0.005875) 0.027166 / 0.128546 (-0.101380) 0.007388 / 0.075646 (-0.068258) 0.053885 / 0.419271 (-0.365387) 0.032804 / 0.043533 (-0.010729) 0.271664 / 0.255139 (0.016525) 0.284613 / 0.283200 (0.001414) 0.018488 / 0.141683 (-0.123195) 1.125854 / 1.452155 (-0.326301) 1.195896 / 1.492716 (-0.296820)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.092438 / 0.018006 (0.074431) 0.315265 / 0.000490 (0.314775) 0.000228 / 0.000200 (0.000028) 0.000043 / 0.000054 (-0.000011)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.021373 / 0.037411 (-0.016038) 0.070611 / 0.014526 (0.056085) 0.080391 / 0.176557 (-0.096165) 0.118749 / 0.737135 (-0.618386) 0.082340 / 0.296338 (-0.213999)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.295583 / 0.215209 (0.080374) 2.882152 / 2.077655 (0.804497) 1.565088 / 1.504120 (0.060968) 1.451954 / 1.541195 (-0.089241) 1.505783 / 1.468490 (0.037293) 0.404699 / 4.584777 (-4.180078) 2.451703 / 3.745712 (-1.294009) 2.596301 / 5.269862 (-2.673560) 1.547014 / 4.565676 (-3.018662) 0.047750 / 0.424275 (-0.376525) 0.004850 / 0.007607 (-0.002757) 0.346893 / 0.226044 (0.120849) 3.383355 / 2.268929 (1.114426) 1.943933 / 55.444624 (-53.500692) 1.657513 / 6.876477 (-5.218964) 1.687166 / 2.142072 (-0.454906) 0.478543 / 4.805227 (-4.326685) 0.097804 / 6.500664 (-6.402860) 0.041392 / 0.075469 (-0.034078)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.983894 / 1.841788 (-0.857893) 12.446443 / 8.074308 (4.372135) 10.973461 / 10.191392 (0.782069) 0.131630 / 0.680424 (-0.548794) 0.017196 / 0.534201 (-0.517005) 0.270873 / 0.579283 (-0.308411) 0.284379 / 0.434364 (-0.149985) 0.306103 / 0.540337 (-0.234234) 0.413762 / 1.386936 (-0.973174)

@albertvillanova
Copy link
Member Author

Note I had to add pa.ExtensionType.__reduce__ because this is used by copy.deepcopy when using .with_format. See error below.

This method was added in pyarrow-13.0.0: apache/arrow#36170

  • We need to re-implement it as long we support lower pyarrow versions

Errors: https://github.com/huggingface/datasets/actions/runs/6861278161/job/18656665772

 ____________________________ test_dataset_map[True] ____________________________
[gw1] linux -- Python 3.8.18 /opt/hostedtoolcache/Python/3.8.18/x64/bin/python

>   ???
E   KeyError: 'extension<datasets.features.features.array3dextensiontype<array3dextensiontype>>'

pyarrow/types.pxi:3155: KeyError

During handling of the above exception, another exception occurred:

with_none = True

    @pytest.mark.parametrize("with_none", [False, True])
    def test_dataset_map(with_none):
        ds = datasets.Dataset.from_dict({"path": ["path1", "path2"]})
    
        def process_data(batch):
            batch = {
                "image": [
                    np.array(
                        [
                            [[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                            [[10, 20, 30], [40, 50, 60], [70, 80, 90]],
                            [[100, 200, 300], [400, 500, 600], [700, 800, 900]],
                        ]
                    )
                    for _ in batch["path"]
                ]
            }
            if with_none:
                batch["image"][0] = None
            return batch
    
        features = datasets.Features({"image": Array3D(dtype="int32", shape=(3, 3, 3))})
        processed_ds = ds.map(process_data, batched=True, remove_columns=ds.column_names, features=features)
        assert processed_ds.shape == (2, 1)
>       with processed_ds.with_format("numpy") as pds:

tests/features/test_array_xd.py:459: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/datasets/arrow_dataset.py:2669: in with_format
    dataset = copy.deepcopy(self)
/opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/copy.py:172: in deepcopy
    y = _reconstruct(x, memo, *rv)
/opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/copy.py:270: in _reconstruct
    state = deepcopy(state, memo)
/opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/copy.py:146: in deepcopy
    y = copier(x, memo)
/opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/copy.py:230: in _deepcopy_dict
    y[deepcopy(key, memo)] = deepcopy(value, memo)
/opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/copy.py:153: in deepcopy
    y = copier(memo)
/opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/datasets/table.py:188: in __deepcopy__
    return _deepcopy(self, memo)
/opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/datasets/table.py:86: in _deepcopy
    setattr(result, k, copy.deepcopy(v, memo))
/opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/copy.py:172: in deepcopy
    y = _reconstruct(x, memo, *rv)
/opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/copy.py:264: in _reconstruct
    y = func(*args)
/opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/copy.py:263: in <genexpr>
    args = (deepcopy(arg, memo) for arg in args)
/opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/copy.py:146: in deepcopy
    y = copier(x, memo)
/opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/copy.py:205: in _deepcopy_list
    append(deepcopy(a, memo))
/opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/copy.py:172: in deepcopy
    y = _reconstruct(x, memo, *rv)
/opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/copy.py:264: in _reconstruct
    y = func(*args)
/opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/copy.py:263: in <genexpr>
    args = (deepcopy(arg, memo) for arg in args)
/opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/copy.py:172: in deepcopy
    y = _reconstruct(x, memo, *rv)
/opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/copy.py:264: in _reconstruct
    y = func(*args)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

>   ???
E   ValueError: No type alias for extension<datasets.features.features.array3dextensiontype<array3dextensiontype>>

pyarrow/types.pxi:3157: ValueError
=========================== short test summary info ============================
FAILED tests/test_arrow_dataset.py::BaseDatasetTest::test_class_encode_column_on_disk - ValueError: No type alias for extension<datasets.features.features.array2dextensiontype<array2dextensiontype>>
FAILED tests/test_arrow_dataset.py::BaseDatasetTest::test_dummy_dataset_on_disk - ValueError: No type alias for extension<datasets.features.features.array2dextensiontype<array2dextensiontype>>
FAILED tests/test_arrow_dataset.py::BaseDatasetTest::test_tf_dataset_conversion_in_memory - ValueError: No type alias for extension<datasets.features.features.array2dextensiontype<array2dextensiontype>>
FAILED tests/test_arrow_dataset.py::BaseDatasetTest::test_tf_dataset_conversion_on_disk - ValueError: No type alias for extension<datasets.features.features.array2dextensiontype<array2dextensiontype>>
FAILED tests/test_arrow_dataset.py::BaseDatasetTest::test_tf_dataset_options_in_memory - ValueError: No type alias for extension<datasets.features.features.array2dextensiontype<array2dextensiontype>>
FAILED tests/test_arrow_dataset.py::BaseDatasetTest::test_tf_dataset_options_on_disk - ValueError: No type alias for extension<datasets.features.features.array2dextensiontype<array2dextensiontype>>
FAILED tests/test_arrow_dataset.py::BaseDatasetTest::test_to_csv_on_disk - ValueError: No type alias for extension<datasets.features.features.array2dextensiontype<array2dextensiontype>>
FAILED tests/test_arrow_dataset.py::BaseDatasetTest::test_to_parquet_on_disk - ValueError: No type alias for extension<datasets.features.features.array2dextensiontype<array2dextensiontype>>
FAILED tests/test_arrow_dataset.py::BaseDatasetTest::test_to_sql_on_disk - ValueError: No type alias for extension<datasets.features.features.array2dextensiontype<array2dextensiontype>>
FAILED tests/test_arrow_dataset.py::test_map_cases[True] - ValueError: No type alias for extension<datasets.features.features.array2dextensiontype<array2dextensiontype>>
FAILED tests/test_arrow_dataset.py::test_map_cases[False] - ValueError: No type alias for extension<datasets.features.features.array2dextensiontype<array2dextensiontype>>
FAILED tests/test_arrow_dataset.py::test_map_cases[mix] - ValueError: No type alias for extension<datasets.features.features.array2dextensiontype<array2dextensiontype>>
FAILED tests/features/test_array_xd.py::ArrayXDDynamicTest::test_map_dataset - ValueError: No type alias for extension<datasets.features.features.array3dextensiontype<array3dextensiontype>>
FAILED tests/features/test_array_xd.py::test_dataset_map[False] - ValueError: No type alias for extension<datasets.features.features.array3dextensiontype<array3dextensiontype>>
FAILED tests/features/test_array_xd.py::test_dataset_map[True] - ValueError: No type alias for extension<datasets.features.features.array3dextensiontype<array3dextensiontype>>
===== 15 failed,

Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.007338 / 0.011353 (-0.004015) 0.004308 / 0.011008 (-0.006700) 0.088788 / 0.038508 (0.050280) 0.039369 / 0.023109 (0.016260) 0.334527 / 0.275898 (0.058629) 0.373748 / 0.323480 (0.050268) 0.005550 / 0.007986 (-0.002435) 0.003606 / 0.004328 (-0.000723) 0.072238 / 0.004250 (0.067988) 0.061271 / 0.037052 (0.024218) 0.336333 / 0.258489 (0.077844) 0.398256 / 0.293841 (0.104415) 0.041941 / 0.128546 (-0.086605) 0.013372 / 0.075646 (-0.062274) 0.336221 / 0.419271 (-0.083050) 0.083013 / 0.043533 (0.039480) 0.334743 / 0.255139 (0.079604) 0.362572 / 0.283200 (0.079373) 0.031161 / 0.141683 (-0.110521) 1.563441 / 1.452155 (0.111287) 1.704059 / 1.492716 (0.211343)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.252978 / 0.018006 (0.234972) 0.506348 / 0.000490 (0.505859) 0.011679 / 0.000200 (0.011479) 0.000104 / 0.000054 (0.000049)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.026257 / 0.037411 (-0.011154) 0.085936 / 0.014526 (0.071410) 0.098542 / 0.176557 (-0.078015) 0.154507 / 0.737135 (-0.582628) 0.111493 / 0.296338 (-0.184845)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.575941 / 0.215209 (0.360732) 5.590230 / 2.077655 (3.512576) 2.463330 / 1.504120 (0.959211) 2.125760 / 1.541195 (0.584565) 2.095933 / 1.468490 (0.627443) 0.844768 / 4.584777 (-3.740009) 4.768995 / 3.745712 (1.023282) 4.670484 / 5.269862 (-0.599377) 2.630386 / 4.565676 (-1.935290) 0.085996 / 0.424275 (-0.338279) 0.007900 / 0.007607 (0.000293) 0.685463 / 0.226044 (0.459419) 6.699310 / 2.268929 (4.430381) 3.132542 / 55.444624 (-52.312083) 2.527963 / 6.876477 (-4.348513) 2.381835 / 2.142072 (0.239763) 0.909668 / 4.805227 (-3.895559) 0.209979 / 6.500664 (-6.290685) 0.079222 / 0.075469 (0.003753)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.444895 / 1.841788 (-0.396892) 20.388140 / 8.074308 (12.313832) 19.354148 / 10.191392 (9.162756) 0.222433 / 0.680424 (-0.457991) 0.029710 / 0.534201 (-0.504491) 0.427153 / 0.579283 (-0.152130) 0.537500 / 0.434364 (0.103136) 0.506917 / 0.540337 (-0.033421) 0.726088 / 1.386936 (-0.660848)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.007652 / 0.011353 (-0.003701) 0.004320 / 0.011008 (-0.006688) 0.072721 / 0.038508 (0.034212) 0.068204 / 0.023109 (0.045095) 0.392087 / 0.275898 (0.116189) 0.431638 / 0.323480 (0.108158) 0.005419 / 0.007986 (-0.002566) 0.004305 / 0.004328 (-0.000023) 0.069042 / 0.004250 (0.064791) 0.051555 / 0.037052 (0.014503) 0.412141 / 0.258489 (0.153651) 0.438802 / 0.293841 (0.144961) 0.043631 / 0.128546 (-0.084915) 0.014169 / 0.075646 (-0.061478) 0.079571 / 0.419271 (-0.339701) 0.056707 / 0.043533 (0.013174) 0.413698 / 0.255139 (0.158559) 0.414127 / 0.283200 (0.130928) 0.031380 / 0.141683 (-0.110303) 1.677157 / 1.452155 (0.225003) 1.755155 / 1.492716 (0.262439)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.257236 / 0.018006 (0.239230) 0.521347 / 0.000490 (0.520858) 0.006282 / 0.000200 (0.006082) 0.000139 / 0.000054 (0.000085)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.028433 / 0.037411 (-0.008978) 0.087698 / 0.014526 (0.073172) 0.108840 / 0.176557 (-0.067716) 0.157432 / 0.737135 (-0.579704) 0.103144 / 0.296338 (-0.193195)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.598745 / 0.215209 (0.383536) 5.981460 / 2.077655 (3.903805) 2.556931 / 1.504120 (1.052811) 2.179915 / 1.541195 (0.638720) 2.240841 / 1.468490 (0.772351) 0.811501 / 4.584777 (-3.773276) 4.718282 / 3.745712 (0.972570) 4.365738 / 5.269862 (-0.904124) 2.669798 / 4.565676 (-1.895878) 0.099135 / 0.424275 (-0.325140) 0.007369 / 0.007607 (-0.000238) 0.669491 / 0.226044 (0.443447) 6.700389 / 2.268929 (4.431461) 3.155328 / 55.444624 (-52.289296) 2.563375 / 6.876477 (-4.313102) 2.545191 / 2.142072 (0.403119) 0.961359 / 4.805227 (-3.843868) 0.189391 / 6.500664 (-6.311273) 0.061597 / 0.075469 (-0.013873)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.564008 / 1.841788 (-0.277780) 21.401307 / 8.074308 (13.326999) 20.693441 / 10.191392 (10.502049) 0.229340 / 0.680424 (-0.451084) 0.033637 / 0.534201 (-0.500564) 0.429394 / 0.579283 (-0.149889) 0.557202 / 0.434364 (0.122838) 0.510284 / 0.540337 (-0.030054) 0.725661 / 1.386936 (-0.661276)

@HuggingFaceDocBuilderDev
Copy link

HuggingFaceDocBuilderDev commented Nov 14, 2023

The documentation is not available anymore as the PR was closed or merged.

Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004820 / 0.011353 (-0.006533) 0.003152 / 0.011008 (-0.007856) 0.061842 / 0.038508 (0.023334) 0.030127 / 0.023109 (0.007018) 0.257409 / 0.275898 (-0.018489) 0.269382 / 0.323480 (-0.054097) 0.004288 / 0.007986 (-0.003698) 0.002500 / 0.004328 (-0.001829) 0.048520 / 0.004250 (0.044270) 0.046815 / 0.037052 (0.009763) 0.245858 / 0.258489 (-0.012631) 0.289636 / 0.293841 (-0.004205) 0.023983 / 0.128546 (-0.104563) 0.007336 / 0.075646 (-0.068310) 0.202347 / 0.419271 (-0.216924) 0.057737 / 0.043533 (0.014204) 0.245922 / 0.255139 (-0.009217) 0.268788 / 0.283200 (-0.014412) 0.017819 / 0.141683 (-0.123864) 1.149889 / 1.452155 (-0.302265) 1.227192 / 1.492716 (-0.265524)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.092234 / 0.018006 (0.074228) 0.310259 / 0.000490 (0.309769) 0.000223 / 0.000200 (0.000023) 0.000044 / 0.000054 (-0.000010)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.019059 / 0.037411 (-0.018352) 0.064904 / 0.014526 (0.050378) 0.073531 / 0.176557 (-0.103026) 0.120879 / 0.737135 (-0.616257) 0.075410 / 0.296338 (-0.220929)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.275364 / 0.215209 (0.060155) 2.724379 / 2.077655 (0.646725) 1.447617 / 1.504120 (-0.056503) 1.366794 / 1.541195 (-0.174401) 1.345849 / 1.468490 (-0.122641) 0.411205 / 4.584777 (-4.173572) 2.412712 / 3.745712 (-1.333000) 2.612469 / 5.269862 (-2.657393) 1.552113 / 4.565676 (-3.013564) 0.045783 / 0.424275 (-0.378492) 0.004782 / 0.007607 (-0.002825) 0.339218 / 0.226044 (0.113174) 3.359540 / 2.268929 (1.090612) 1.821369 / 55.444624 (-53.623256) 1.540742 / 6.876477 (-5.335734) 1.531845 / 2.142072 (-0.610227) 0.462009 / 4.805227 (-4.343218) 0.097794 / 6.500664 (-6.402870) 0.041222 / 0.075469 (-0.034247)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.938319 / 1.841788 (-0.903469) 11.712003 / 8.074308 (3.637695) 10.325317 / 10.191392 (0.133925) 0.126812 / 0.680424 (-0.553612) 0.013734 / 0.534201 (-0.520467) 0.279509 / 0.579283 (-0.299774) 0.269265 / 0.434364 (-0.165099) 0.322033 / 0.540337 (-0.218304) 0.441610 / 1.386936 (-0.945326)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004882 / 0.011353 (-0.006471) 0.002984 / 0.011008 (-0.008024) 0.048318 / 0.038508 (0.009810) 0.054642 / 0.023109 (0.031533) 0.268599 / 0.275898 (-0.007299) 0.292916 / 0.323480 (-0.030564) 0.004108 / 0.007986 (-0.003878) 0.002500 / 0.004328 (-0.001829) 0.048452 / 0.004250 (0.044202) 0.038835 / 0.037052 (0.001782) 0.275410 / 0.258489 (0.016921) 0.307284 / 0.293841 (0.013443) 0.024720 / 0.128546 (-0.103826) 0.007274 / 0.075646 (-0.068372) 0.054419 / 0.419271 (-0.364853) 0.032815 / 0.043533 (-0.010718) 0.273660 / 0.255139 (0.018521) 0.289183 / 0.283200 (0.005984) 0.017746 / 0.141683 (-0.123937) 1.153876 / 1.452155 (-0.298278) 1.212778 / 1.492716 (-0.279938)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.095286 / 0.018006 (0.077280) 0.305185 / 0.000490 (0.304696) 0.000230 / 0.000200 (0.000030) 0.000054 / 0.000054 (-0.000000)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.021556 / 0.037411 (-0.015855) 0.071029 / 0.014526 (0.056503) 0.081914 / 0.176557 (-0.094643) 0.120553 / 0.737135 (-0.616582) 0.086696 / 0.296338 (-0.209642)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.289750 / 0.215209 (0.074541) 2.794247 / 2.077655 (0.716592) 1.577105 / 1.504120 (0.072985) 1.457706 / 1.541195 (-0.083489) 1.500481 / 1.468490 (0.031991) 0.403834 / 4.584777 (-4.180943) 2.466810 / 3.745712 (-1.278902) 2.701008 / 5.269862 (-2.568854) 1.634821 / 4.565676 (-2.930856) 0.046954 / 0.424275 (-0.377322) 0.004811 / 0.007607 (-0.002796) 0.347622 / 0.226044 (0.121578) 3.407125 / 2.268929 (1.138197) 1.987121 / 55.444624 (-53.457504) 1.689978 / 6.876477 (-5.186499) 1.731801 / 2.142072 (-0.410271) 0.478926 / 4.805227 (-4.326301) 0.100730 / 6.500664 (-6.399934) 0.043078 / 0.075469 (-0.032391)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.963575 / 1.841788 (-0.878212) 12.675331 / 8.074308 (4.601023) 11.167584 / 10.191392 (0.976192) 0.131199 / 0.680424 (-0.549225) 0.016030 / 0.534201 (-0.518171) 0.277783 / 0.579283 (-0.301500) 0.278693 / 0.434364 (-0.155671) 0.315141 / 0.540337 (-0.225196) 0.429104 / 1.386936 (-0.957832)

@albertvillanova albertvillanova changed the title Support pyarrow 14.0.1 Support pyarrow 14.0.1 and fix vulnerability Nov 14, 2023
@albertvillanova albertvillanova changed the title Support pyarrow 14.0.1 and fix vulnerability Support pyarrow 14.0.1 and fix vulnerability CVE-2023-47248 Nov 14, 2023
@albertvillanova albertvillanova merged commit c096bd2 into main Nov 14, 2023
13 checks passed
@albertvillanova albertvillanova deleted the fix-6396 branch November 14, 2023 10:23
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004807 / 0.011353 (-0.006546) 0.002925 / 0.011008 (-0.008083) 0.062560 / 0.038508 (0.024052) 0.029926 / 0.023109 (0.006817) 0.264708 / 0.275898 (-0.011190) 0.273464 / 0.323480 (-0.050016) 0.003197 / 0.007986 (-0.004788) 0.002544 / 0.004328 (-0.001784) 0.048230 / 0.004250 (0.043980) 0.046552 / 0.037052 (0.009500) 0.249553 / 0.258489 (-0.008936) 0.282078 / 0.293841 (-0.011762) 0.023201 / 0.128546 (-0.105346) 0.007306 / 0.075646 (-0.068340) 0.241361 / 0.419271 (-0.177910) 0.058286 / 0.043533 (0.014753) 0.245854 / 0.255139 (-0.009285) 0.266053 / 0.283200 (-0.017146) 0.020294 / 0.141683 (-0.121388) 1.102215 / 1.452155 (-0.349939) 1.170733 / 1.492716 (-0.321984)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.094647 / 0.018006 (0.076641) 0.303819 / 0.000490 (0.303329) 0.000250 / 0.000200 (0.000050) 0.000055 / 0.000054 (0.000000)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.019036 / 0.037411 (-0.018375) 0.064729 / 0.014526 (0.050203) 0.074143 / 0.176557 (-0.102414) 0.120082 / 0.737135 (-0.617054) 0.076835 / 0.296338 (-0.219503)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.283786 / 0.215209 (0.068577) 2.751446 / 2.077655 (0.673791) 1.473789 / 1.504120 (-0.030331) 1.336968 / 1.541195 (-0.204226) 1.384148 / 1.468490 (-0.084342) 0.397452 / 4.584777 (-4.187325) 2.388042 / 3.745712 (-1.357670) 2.661291 / 5.269862 (-2.608571) 1.595454 / 4.565676 (-2.970223) 0.045919 / 0.424275 (-0.378356) 0.004879 / 0.007607 (-0.002728) 0.337862 / 0.226044 (0.111818) 3.355665 / 2.268929 (1.086737) 1.875261 / 55.444624 (-53.569363) 1.540874 / 6.876477 (-5.335603) 1.653632 / 2.142072 (-0.488440) 0.473090 / 4.805227 (-4.332138) 0.100151 / 6.500664 (-6.400513) 0.042357 / 0.075469 (-0.033112)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.959550 / 1.841788 (-0.882238) 12.307145 / 8.074308 (4.232837) 10.719321 / 10.191392 (0.527929) 0.128376 / 0.680424 (-0.552048) 0.014406 / 0.534201 (-0.519795) 0.295208 / 0.579283 (-0.284075) 0.268891 / 0.434364 (-0.165473) 0.305446 / 0.540337 (-0.234892) 0.429591 / 1.386936 (-0.957345)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005189 / 0.011353 (-0.006164) 0.003082 / 0.011008 (-0.007926) 0.048956 / 0.038508 (0.010448) 0.063403 / 0.023109 (0.040294) 0.272858 / 0.275898 (-0.003040) 0.295207 / 0.323480 (-0.028273) 0.004253 / 0.007986 (-0.003733) 0.002552 / 0.004328 (-0.001776) 0.048042 / 0.004250 (0.043792) 0.040429 / 0.037052 (0.003377) 0.269614 / 0.258489 (0.011125) 0.307205 / 0.293841 (0.013364) 0.027912 / 0.128546 (-0.100634) 0.007621 / 0.075646 (-0.068026) 0.054020 / 0.419271 (-0.365251) 0.036958 / 0.043533 (-0.006574) 0.272457 / 0.255139 (0.017318) 0.287966 / 0.283200 (0.004766) 0.019542 / 0.141683 (-0.122141) 1.116742 / 1.452155 (-0.335413) 1.194739 / 1.492716 (-0.297977)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.093532 / 0.018006 (0.075526) 0.303262 / 0.000490 (0.302773) 0.000217 / 0.000200 (0.000017) 0.000042 / 0.000054 (-0.000013)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.021984 / 0.037411 (-0.015428) 0.075024 / 0.014526 (0.060498) 0.080959 / 0.176557 (-0.095598) 0.121780 / 0.737135 (-0.615356) 0.082817 / 0.296338 (-0.213522)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.292766 / 0.215209 (0.077557) 2.857457 / 2.077655 (0.779802) 1.621860 / 1.504120 (0.117740) 1.473783 / 1.541195 (-0.067412) 1.535211 / 1.468490 (0.066721) 0.402212 / 4.584777 (-4.182565) 2.467143 / 3.745712 (-1.278569) 2.618162 / 5.269862 (-2.651700) 1.568682 / 4.565676 (-2.996994) 0.047123 / 0.424275 (-0.377152) 0.004780 / 0.007607 (-0.002827) 0.346959 / 0.226044 (0.120914) 3.395196 / 2.268929 (1.126268) 1.957835 / 55.444624 (-53.486789) 1.674287 / 6.876477 (-5.202190) 1.715879 / 2.142072 (-0.426193) 0.479481 / 4.805227 (-4.325746) 0.100043 / 6.500664 (-6.400621) 0.041289 / 0.075469 (-0.034180)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.965418 / 1.841788 (-0.876370) 12.703830 / 8.074308 (4.629522) 11.301401 / 10.191392 (1.110009) 0.131429 / 0.680424 (-0.548995) 0.016597 / 0.534201 (-0.517604) 0.273290 / 0.579283 (-0.305993) 0.285400 / 0.434364 (-0.148964) 0.307327 / 0.540337 (-0.233011) 0.434186 / 1.386936 (-0.952750)

albertvillanova added a commit that referenced this pull request Nov 15, 2023
* Replace pa.PyExtensionType with pa.ExtensionType

* Register user-defined extension types

* Pin minimum pyarrow version to 14.0.1

* Temporarily pin minimum pyarrow due to beam constraint

* Remove constraint on pyarrow by removing unneeded upper beam version

* Reset pyarrow minimum due to apache-beam constraint

* Revert last 2 commits

* Revert minimum pyarrow version and use pyarrow-hotfix

* Add pa.ExtensionType.__reduce__
YQ-Wang pushed a commit to YQ-Wang/datasets that referenced this pull request Dec 5, 2023
YQ-Wang added a commit to instabase/datasets that referenced this pull request Dec 5, 2023
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

Issue with pyarrow 14.0.1
4 participants