Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: support non streamable arrow file binary format #7025

Merged

Conversation

kmehant
Copy link
Contributor

@kmehant kmehant commented Jul 4, 2024

Support Arrow files (.arrow) that are in non streamable binary file formats.

@kmehant
Copy link
Contributor Author

kmehant commented Jul 4, 2024

requesting review - @albertvillanova @lhoestq

@kmehant kmehant force-pushed the support-non-streamable-arrow-files branch from 8be0e3f to c75c4c3 Compare July 4, 2024 17:44
@kmehant kmehant force-pushed the support-non-streamable-arrow-files branch 2 times, most recently from 2e3af68 to a3412c5 Compare July 9, 2024 02:21
Copy link
Member

@lhoestq lhoestq left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Awesome thank you ! this will be pretty useful :)

Before we merge could you also add a test in tests/packaged_modules/test_arrow.py ?

I noticed it's pretty empty right now compared to test_json.py or test_csv.py though, maybe I can take care of it next week if needed

src/datasets/packaged_modules/arrow/arrow.py Outdated Show resolved Hide resolved
@HuggingFaceDocBuilderDev

The docs for this PR live here. All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.

@kmehant kmehant requested a review from lhoestq July 9, 2024 17:08
@kmehant kmehant force-pushed the support-non-streamable-arrow-files branch from b497b7d to c257792 Compare July 17, 2024 17:14
@kmehant
Copy link
Contributor Author

kmehant commented Jul 17, 2024

@lhoestq rebased the PR, It would be really helpful to have this feature into datasets, please let me know if there is anything pending on this PR, thanks.

@kmehant kmehant force-pushed the support-non-streamable-arrow-files branch from c257792 to bd6546c Compare July 25, 2024 13:33
@kmehant
Copy link
Contributor Author

kmehant commented Jul 25, 2024

@lhoestq

Have added the unit test to generate tables for both the arrow formats - file and streaming.

Let me know if we have any docs changes as well. Thanks

Screenshot 2024-07-25 at 7 04 26 PM

kmehant and others added 3 commits July 29, 2024 18:33
Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>
Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>
Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>
@kmehant kmehant force-pushed the support-non-streamable-arrow-files branch from bd6546c to a30a66a Compare July 29, 2024 13:03
@kmehant
Copy link
Contributor Author

kmehant commented Jul 29, 2024

@lhoestq any update on this thread? Thanks

@prince14322
Copy link

Timely PR!
Can we please look into this?

Copy link
Member

@albertvillanova albertvillanova left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thank you for the useful enhancement and the test!

@albertvillanova albertvillanova merged commit ce4a0c5 into huggingface:main Jul 31, 2024
14 checks passed
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005737 / 0.011353 (-0.005615) 0.003894 / 0.011008 (-0.007114) 0.067510 / 0.038508 (0.029002) 0.033431 / 0.023109 (0.010321) 0.262766 / 0.275898 (-0.013132) 0.283776 / 0.323480 (-0.039704) 0.003296 / 0.007986 (-0.004689) 0.003577 / 0.004328 (-0.000752) 0.052165 / 0.004250 (0.047915) 0.047815 / 0.037052 (0.010763) 0.263528 / 0.258489 (0.005039) 0.292980 / 0.293841 (-0.000861) 0.031535 / 0.128546 (-0.097011) 0.012966 / 0.075646 (-0.062680) 0.218827 / 0.419271 (-0.200444) 0.039181 / 0.043533 (-0.004352) 0.263768 / 0.255139 (0.008629) 0.288012 / 0.283200 (0.004813) 0.020562 / 0.141683 (-0.121121) 1.180547 / 1.452155 (-0.271608) 1.269283 / 1.492716 (-0.223433)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.098951 / 0.018006 (0.080944) 0.318922 / 0.000490 (0.318433) 0.000214 / 0.000200 (0.000014) 0.000044 / 0.000054 (-0.000010)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.021315 / 0.037411 (-0.016097) 0.067728 / 0.014526 (0.053202) 0.079428 / 0.176557 (-0.097129) 0.127472 / 0.737135 (-0.609663) 0.080455 / 0.296338 (-0.215883)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.308725 / 0.215209 (0.093516) 3.043555 / 2.077655 (0.965900) 1.587419 / 1.504120 (0.083299) 1.444421 / 1.541195 (-0.096774) 1.470703 / 1.468490 (0.002213) 0.784005 / 4.584777 (-3.800772) 2.582064 / 3.745712 (-1.163648) 3.140269 / 5.269862 (-2.129592) 2.031099 / 4.565676 (-2.534577) 0.086999 / 0.424275 (-0.337277) 0.005923 / 0.007607 (-0.001684) 0.361333 / 0.226044 (0.135289) 3.587173 / 2.268929 (1.318244) 1.961448 / 55.444624 (-53.483177) 1.649868 / 6.876477 (-5.226609) 1.698595 / 2.142072 (-0.443478) 0.858552 / 4.805227 (-3.946676) 0.146001 / 6.500664 (-6.354663) 0.046049 / 0.075469 (-0.029421)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.022644 / 1.841788 (-0.819144) 12.655994 / 8.074308 (4.581686) 10.205832 / 10.191392 (0.014440) 0.156073 / 0.680424 (-0.524351) 0.015550 / 0.534201 (-0.518651) 0.327762 / 0.579283 (-0.251521) 0.299212 / 0.434364 (-0.135152) 0.367549 / 0.540337 (-0.172788) 0.474499 / 1.386936 (-0.912437)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005904 / 0.011353 (-0.005448) 0.004245 / 0.011008 (-0.006763) 0.054309 / 0.038508 (0.015801) 0.037490 / 0.023109 (0.014381) 0.293540 / 0.275898 (0.017642) 0.324068 / 0.323480 (0.000588) 0.004675 / 0.007986 (-0.003311) 0.003091 / 0.004328 (-0.001238) 0.052972 / 0.004250 (0.048721) 0.045545 / 0.037052 (0.008493) 0.301465 / 0.258489 (0.042976) 0.342822 / 0.293841 (0.048981) 0.033958 / 0.128546 (-0.094588) 0.013311 / 0.075646 (-0.062336) 0.064050 / 0.419271 (-0.355222) 0.038127 / 0.043533 (-0.005406) 0.297383 / 0.255139 (0.042244) 0.312244 / 0.283200 (0.029044) 0.019395 / 0.141683 (-0.122288) 1.244335 / 1.452155 (-0.207820) 1.305547 / 1.492716 (-0.187169)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.101847 / 0.018006 (0.083840) 0.330827 / 0.000490 (0.330337) 0.000211 / 0.000200 (0.000011) 0.000047 / 0.000054 (-0.000008)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.025734 / 0.037411 (-0.011677) 0.085020 / 0.014526 (0.070494) 0.096724 / 0.176557 (-0.079833) 0.141276 / 0.737135 (-0.595859) 0.099150 / 0.296338 (-0.197189)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.316058 / 0.215209 (0.100849) 3.059459 / 2.077655 (0.981804) 1.638394 / 1.504120 (0.134274) 1.505313 / 1.541195 (-0.035881) 1.526635 / 1.468490 (0.058145) 0.777259 / 4.584777 (-3.807518) 1.059575 / 3.745712 (-2.686137) 2.952334 / 5.269862 (-2.317528) 2.003894 / 4.565676 (-2.561782) 0.084464 / 0.424275 (-0.339811) 0.007343 / 0.007607 (-0.000265) 0.366218 / 0.226044 (0.140174) 3.705588 / 2.268929 (1.436660) 2.047029 / 55.444624 (-53.397595) 1.766970 / 6.876477 (-5.109507) 1.883804 / 2.142072 (-0.258268) 0.865780 / 4.805227 (-3.939447) 0.143180 / 6.500664 (-6.357485) 0.044943 / 0.075469 (-0.030527)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.141391 / 1.841788 (-0.700397) 13.244917 / 8.074308 (5.170609) 10.907863 / 10.191392 (0.716471) 0.156087 / 0.680424 (-0.524337) 0.016487 / 0.534201 (-0.517714) 0.331377 / 0.579283 (-0.247906) 0.148863 / 0.434364 (-0.285501) 0.370443 / 0.540337 (-0.169895) 0.499647 / 1.386936 (-0.887289)

albertvillanova pushed a commit that referenced this pull request Aug 13, 2024
* feat: support non streamable arrow file binary format

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>

* use generator

Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>

* feat: add unit test to load data in both arrow formats

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>

---------

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>
Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>
albertvillanova pushed a commit that referenced this pull request Aug 13, 2024
* feat: support non streamable arrow file binary format

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>

* use generator

Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>

* feat: add unit test to load data in both arrow formats

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>

---------

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>
Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>
albertvillanova pushed a commit that referenced this pull request Aug 14, 2024
* feat: support non streamable arrow file binary format

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>

* use generator

Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>

* feat: add unit test to load data in both arrow formats

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>

---------

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>
Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

5 participants