Skip to content

Commit

Permalink
[LoRA] Adds example on text2image fine-tuning with LoRA (#2031)
Browse files Browse the repository at this point in the history
* example on fine-tuning with LoRA.

* apply make quality.

* fix: pipeline loading.

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* apply suggestions for PR review.

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* apply make style and make quality.

* chore: remove mention of dreambooth from text2image.

* add: weight path and wandb run link.

* Apply suggestions from code review

* apply make style.

* make style

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
  • Loading branch information
3 people authored Jan 23, 2023
1 parent b15a951 commit ffb3a26
Show file tree
Hide file tree
Showing 3 changed files with 888 additions and 1 deletion.
76 changes: 75 additions & 1 deletion examples/text_to_image/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -110,7 +110,82 @@ image = pipe(prompt="yoda").images[0]
image.save("yoda-pokemon.png")
```

## Training with LoRA

Low-Rank Adaption of Large Language Models was first introduced by Microsoft in [LoRA: Low-Rank Adaptation of Large Language Models](https://arxiv.org/abs/2106.09685) by *Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen*.

In a nutshell, LoRA allows adapting pretrained models by adding pairs of rank-decomposition matrices to existing weights and **only** training those newly added weights. This has a couple of advantages:

- Previous pretrained weights are kept frozen so that model is not prone to [catastrophic forgetting](https://www.pnas.org/doi/10.1073/pnas.1611835114).
- Rank-decomposition matrices have significantly fewer parameters than original model, which means that trained LoRA weights are easily portable.
- LoRA attention layers allow to control to which extent the model is adapted toward new training images via a `scale` parameter.

[cloneofsimo](https://github.com/cloneofsimo) was the first to try out LoRA training for Stable Diffusion in the popular [lora](https://github.com/cloneofsimo/lora) GitHub repository.

With LoRA, it's possible to fine-tune Stable Diffusion on a custom image-caption pair dataset
on consumer GPUs like Tesla T4, Tesla V100.

### Training

First, you need to set up your development environment as is explained in the [installation section](#installing-the-dependencies). Make sure to set the `MODEL_NAME` and `DATASET_NAME` environment variables. Here, we will use [Stable Diffusion v1-4](https://hf.co/CompVis/stable-diffusion-v1-4) and the [Pokemons dataset](https://hf.colambdalabs/pokemon-blip-captions).

**___Note: Change the `resolution` to 768 if you are using the [stable-diffusion-2](https://huggingface.co/stabilityai/stable-diffusion-2) 768x768 model.___**

**___Note: It is quite useful to monitor the training progress by regularly generating sample images during training. [Weights and Biases](https://docs.wandb.ai/quickstart) is a nice solution to easily see generating images during training. All you need to do is to run `pip install wandb` before training to automatically log images.___**

```bash
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export DATASET_NAME="lambdalabs/pokemon-blip-captions"
```

For this example we want to directly store the trained LoRA embeddings on the Hub, so
we need to be logged in and add the `--push_to_hub` flag.

```bash
huggingface-cli login
```

Now we can start training!

```bash
accelerate --mixed_precision="fp16" launch train_text_to_image_lora.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--dataset_name=$DATASET_NAME --caption_column="text" \
--resolution=512 --random_flip \
--train_batch_size=1 \
--num_train_epochs=100 --checkpointing_steps=5000 \
--learning_rate=1e-04 --lr_scheduler="constant" --lr_warmup_steps=0 \
--seed=42 \
--output_dir="sd-pokemon-model-lora" \
--save_sample_prompt="cute dragon creature" --report_to="wandb"
```

The above command will also run inference as fine-tuning progresses and log the results to Weights and Biases.

**___Note: When using LoRA we can use a much higher learning rate compared to non-LoRA fine-tuning. Here we use *1e-4* instead of the usual *1e-5*. Also, by using LoRA, it's possible to run `train_text_to_image_lora.py` in consumer GPUs like T4 or V100.**

The final LoRA embedding weights have been uploaded to [sayakpaul/sd-model-finetuned-lora-t4](https://huggingface.co/sayakpaul/sd-model-finetuned-lora-t4). **___Note: [The final weights](https://huggingface.co/sayakpaul/sd-model-finetuned-lora-t4/blob/main/pytorch_lora_weights.bin) are only 3 MB in size, which is orders of magnitudes smaller than the original model.**

You can check some inference samples that were logged during the course of the fine-tuning process [here](https://wandb.ai/sayakpaul/text2image-fine-tune/runs/q4lc0xsw).

### Inference

Once you have trained a model using above command, the inference can be done simply using the `StableDiffusionPipeline` after loading the trained LoRA weights. You
need to pass the `output_dir` for loading the LoRA weights which, in this case, is `sd-pokemon-model-lora`.

```python
from diffusers import StableDiffusionPipeline
import torch

model_path = "sayakpaul/sd-model-finetuned-lora-t4"
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
pipe.unet.load_attn_procs(model_path)
pipe.to("cuda")

prompt = "A pokemon with green eyes and red legs."
image = pipe(prompt, num_inference_steps=30, guidance_scale=7.5).images[0]
image.save("pokemon.png")
```

## Training with Flax/JAX

Expand Down Expand Up @@ -141,7 +216,6 @@ python train_text_to_image_flax.py \
--output_dir="sd-pokemon-model"
```


To run on your own training files prepare the dataset according to the format required by `datasets`, you can find the instructions for how to do that in this [document](https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder-with-metadata).
If you wish to use custom loading logic, you should modify the script, we have left pointers for that in the training script.

Expand Down
1 change: 1 addition & 0 deletions examples/text_to_image/requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -4,4 +4,5 @@ transformers>=4.25.1
datasets
ftfy
tensorboard
wandb
Jinja2
Loading

0 comments on commit ffb3a26

Please sign in to comment.