Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Core] enable lora for sdxl controlnets too and add slow tests. #4666

Merged
merged 3 commits into from
Aug 22, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
74 changes: 74 additions & 0 deletions src/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@


import inspect
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import numpy as np
Expand Down Expand Up @@ -1169,3 +1170,76 @@ def __call__(
return (image,)

return StableDiffusionXLPipelineOutput(images=image)

# Overrride to properly handle the loading and unloading of the additional text encoder.
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.load_lora_weights
def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
# We could have accessed the unet config from `lora_state_dict()` too. We pass
# it here explicitly to be able to tell that it's coming from an SDXL
# pipeline.
state_dict, network_alphas = self.lora_state_dict(
pretrained_model_name_or_path_or_dict,
unet_config=self.unet.config,
**kwargs,
)
self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet)

text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
if len(text_encoder_state_dict) > 0:
self.load_lora_into_text_encoder(
text_encoder_state_dict,
network_alphas=network_alphas,
text_encoder=self.text_encoder,
prefix="text_encoder",
lora_scale=self.lora_scale,
)

text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k}
if len(text_encoder_2_state_dict) > 0:
self.load_lora_into_text_encoder(
text_encoder_2_state_dict,
network_alphas=network_alphas,
text_encoder=self.text_encoder_2,
prefix="text_encoder_2",
lora_scale=self.lora_scale,
)

@classmethod
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.save_lora_weights
def save_lora_weights(
self,
save_directory: Union[str, os.PathLike],
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
is_main_process: bool = True,
weight_name: str = None,
save_function: Callable = None,
safe_serialization: bool = True,
):
state_dict = {}

def pack_weights(layers, prefix):
layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
return layers_state_dict

state_dict.update(pack_weights(unet_lora_layers, "unet"))

if text_encoder_lora_layers and text_encoder_2_lora_layers:
state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder"))
state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))

self.write_lora_layers(
state_dict=state_dict,
save_directory=save_directory,
is_main_process=is_main_process,
weight_name=weight_name,
save_function=save_function,
safe_serialization=safe_serialization,
)

# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._remove_text_encoder_monkey_patch
def _remove_text_encoder_monkey_patch(self):
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2)
83 changes: 81 additions & 2 deletions tests/pipelines/controlnet/test_controlnet_sdxl.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
Expand All @@ -27,9 +28,9 @@
UNet2DConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel
from diffusers.utils import randn_tensor, torch_device
from diffusers.utils import load_image, randn_tensor, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow

from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
Expand Down Expand Up @@ -678,3 +679,81 @@ def test_xformers_attention_forwardGenerator_pass(self):

def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(expected_max_diff=2e-3)


@slow
@require_torch_gpu
class ControlNetSDXLPipelineSlowTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()

def test_canny(self):
controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0")

pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet
)
pipe.enable_sequential_cpu_offload()
pipe.set_progress_bar_config(disable=None)

generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "bird"
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
)

images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images

assert images[0].shape == (768, 512, 3)

original_image = images[0, -3:, -3:, -1].flatten()
expected_image = np.array([0.4185, 0.4127, 0.4089, 0.4046, 0.4115, 0.4096, 0.4081, 0.4112, 0.3913])
assert np.allclose(original_image, expected_image, atol=1e-04)

def test_depth(self):
controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-depth-sdxl-1.0")

pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet
)
pipe.enable_sequential_cpu_offload()
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Just a question. Is there are difference between enable_model_cpu_offload and enable_sequential_cpu_offload? Is one preferred over the other?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Would suggest checking out the doc here:

def enable_sequential_cpu_offload(self, gpu_id: int = 0, device: Union[torch.device, str] = "cuda"):

pipe.set_progress_bar_config(disable=None)

generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "Stormtrooper's lecture"
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth.png"
)

images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images

assert images[0].shape == (512, 512, 3)

original_image = images[0, -3:, -3:, -1].flatten()
expected_image = np.array([0.4399, 0.5112, 0.5478, 0.4314, 0.472, 0.4823, 0.4647, 0.4957, 0.4853])
assert np.allclose(original_image, expected_image, atol=1e-04)

def test_canny_lora(self):
controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0")

pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet
)
pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors")
pipe.enable_sequential_cpu_offload()

generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "corgi"
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
)

images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images

assert images[0].shape == (768, 512, 3)

original_image = images[0, -3:, -3:, -1].flatten()
expected_image = np.array([0.4574, 0.4461, 0.4435, 0.4462, 0.4396, 0.439, 0.4474, 0.4486, 0.4333])
assert np.allclose(original_image, expected_image, atol=1e-04)
Loading