-
Notifications
You must be signed in to change notification settings - Fork 1.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
ENH: Different initialization methods for LoRA (#1189)
This PR adds the possibility to use different initialization methods for LoRA, as is a requirement for a completely backwards compatible adoption of PEFT in diffusers. The default is still the same as always, namely the one from the reference implementation by Microsoft. On top of that, it is now possible to pass `init_lora_weights='gaussian'` to initialize the LoRA weights in the same way as is default for diffusers, namely with a normal distribution which is scaled by 1/r. The init method currently applies to LoRA linear and conv layers, but not embedding layers, which are always initialized from a normal distribution (and are probably irrelevant for diffusers). In the future, similar extensions could be added for other adapter methods.
- Loading branch information
1 parent
04c4110
commit f0fb951
Showing
4 changed files
with
258 additions
and
12 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,232 @@ | ||
# coding=utf-8 | ||
# Copyright 2023-present the HuggingFace Inc. team. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import unittest | ||
|
||
import torch | ||
from scipy import stats | ||
from torch import nn | ||
|
||
from peft import LoraConfig, get_peft_model | ||
from peft.utils import infer_device | ||
|
||
|
||
class InitializationTest(unittest.TestCase): | ||
"""Test class to check the initialization of adapters.""" | ||
|
||
torch_device = infer_device() | ||
|
||
def get_uniform(self, amin, amax, size=(10000,)): | ||
unif = torch.distributions.uniform.Uniform(amin, amax) | ||
samples = unif.sample(size) | ||
return samples | ||
|
||
def get_normal(self, mean, std, size=(10000,)): | ||
normal = torch.distributions.normal.Normal(mean, std) | ||
samples = normal.sample(size) | ||
return samples | ||
|
||
def get_model(self): | ||
class MyModule(nn.Module): | ||
def __init__(self): | ||
super().__init__() | ||
# choose a large weight so that averages are close to expected values | ||
self.linear = nn.Linear(1000, 1000) | ||
self.embed = nn.Embedding(1000, 1000) | ||
self.conv2d = nn.Conv2d(100, 100, 3) | ||
|
||
def forward(self, x): | ||
return self.linear(x) | ||
|
||
return MyModule().eval().to(self.torch_device) | ||
|
||
def test_lora_linear_init_default(self): | ||
# default is True | ||
torch.manual_seed(0) | ||
|
||
model = self.get_model() | ||
config = LoraConfig(target_modules=["linear"]) | ||
model = get_peft_model(model, config) | ||
weight_A = model.linear.lora_A["default"].weight | ||
weight_B = model.linear.lora_B["default"].weight | ||
|
||
# use statistical test to check if weight A is from a uniform distribution | ||
unif = self.get_uniform(weight_A.min().item(), weight_A.max().item()) | ||
_, p_value = stats.kstest(weight_A.detach().flatten().cpu().numpy(), unif.flatten().cpu().numpy()) | ||
self.assertGreater(p_value, 0.5) | ||
|
||
# check that weight A is *not* from a normal distribution | ||
normal = self.get_normal(weight_A.mean().item(), weight_A.std().item()) | ||
_, p_value = stats.kstest(weight_A.detach().flatten().cpu().numpy(), normal.flatten().cpu().numpy()) | ||
self.assertLess(p_value, 0.05) | ||
|
||
# check that weight B is zero | ||
self.assertTrue((weight_B == 0.0).all()) | ||
|
||
def test_lora_linear_init_gaussian(self): | ||
# use gaussian init | ||
torch.manual_seed(0) | ||
|
||
model = self.get_model() | ||
config = LoraConfig(target_modules=["linear"], init_lora_weights="gaussian") | ||
model = get_peft_model(model, config) | ||
weight_A = model.linear.lora_A["default"].weight | ||
weight_B = model.linear.lora_B["default"].weight | ||
|
||
# use statistical test to check if weight A is from a normal distribution | ||
normal = self.get_normal(0.0, 1 / config.r) | ||
_, p_value = stats.kstest(weight_A.detach().flatten().cpu().numpy(), normal.flatten().cpu().numpy()) | ||
|
||
# import matplotlib.pyplot as plt | ||
# x = weight_A.detach().flatten().cpu().numpy() | ||
# breakpoint() | ||
|
||
self.assertGreater(p_value, 0.5) | ||
|
||
# check that weight A is *not* from a uniform distribution | ||
unif = self.get_uniform(weight_A.min().item(), weight_A.max().item()) | ||
_, p_value = stats.kstest(weight_A.detach().flatten().cpu().numpy(), unif.flatten().cpu().numpy()) | ||
self.assertLess(p_value, 0.05) | ||
|
||
# check that weight B is zero | ||
self.assertTrue((weight_B == 0.0).all()) | ||
|
||
def test_lora_linear_false(self): | ||
torch.manual_seed(0) | ||
|
||
model = self.get_model() | ||
config = LoraConfig(target_modules=["linear"], init_lora_weights=False) | ||
model = get_peft_model(model, config) | ||
weight_B = model.linear.lora_B["default"].weight | ||
|
||
# with init_lora_weights=False, weight B should *not* be zero. We don't care so much about the actual values | ||
# as long as they are not zero, in order to avoid identity transformation. | ||
self.assertFalse(torch.allclose(weight_B, torch.zeros_like(weight_B))) | ||
|
||
def test_lora_embedding_default(self): | ||
# embedding is initialized as a normal distribution, not kaiming uniform | ||
torch.manual_seed(0) | ||
|
||
model = self.get_model() | ||
config = LoraConfig(target_modules=["embed"]) | ||
model = get_peft_model(model, config) | ||
weight_A = model.embed.lora_embedding_A["default"] | ||
weight_B = model.embed.lora_embedding_B["default"] | ||
|
||
# use statistical test to check if weight B is from a normal distribution | ||
normal = self.get_normal(0.0, 1.0) | ||
_, p_value = stats.kstest(weight_B.detach().flatten().cpu().numpy(), normal.flatten().cpu().numpy()) | ||
self.assertGreater(p_value, 0.5) | ||
|
||
# check that weight B is *not* from a uniform distribution | ||
unif = self.get_uniform(weight_B.min().item(), weight_B.max().item()) | ||
_, p_value = stats.kstest(weight_B.detach().flatten().cpu().numpy(), unif.flatten().cpu().numpy()) | ||
self.assertLess(p_value, 0.05) | ||
|
||
# check that weight A is zero | ||
self.assertTrue((weight_A == 0.0).all()) | ||
|
||
def test_lora_embedding_gaussian(self): | ||
# embedding does not change with init_lora_weights="gaussian" vs True | ||
torch.manual_seed(0) | ||
|
||
model = self.get_model() | ||
config = LoraConfig(target_modules=["embed"], init_lora_weights="gaussian") | ||
model = get_peft_model(model, config) | ||
weight_A = model.embed.lora_embedding_A["default"] | ||
weight_B = model.embed.lora_embedding_B["default"] | ||
|
||
# use statistical test to check if weight B is from a normal distribution | ||
normal = self.get_normal(0.0, 1.0) | ||
_, p_value = stats.kstest(weight_B.detach().flatten().cpu().numpy(), normal.flatten().cpu().numpy()) | ||
self.assertGreater(p_value, 0.5) | ||
|
||
# check that weight B is *not* from a uniform distribution | ||
unif = self.get_uniform(weight_B.min().item(), weight_B.max().item()) | ||
_, p_value = stats.kstest(weight_B.detach().flatten().cpu().numpy(), unif.flatten().cpu().numpy()) | ||
self.assertLess(p_value, 0.05) | ||
|
||
# check that weight A is zero | ||
self.assertTrue((weight_A == 0.0).all()) | ||
|
||
def test_lora_embedding_false(self): | ||
torch.manual_seed(0) | ||
|
||
model = self.get_model() | ||
config = LoraConfig(target_modules=["embed"], init_lora_weights=False) | ||
model = get_peft_model(model, config) | ||
weight_A = model.embed.lora_embedding_B["default"] | ||
|
||
# with init_lora_weights=False, weight A should *not* be zero. We don't care so much about the actual values | ||
# as long as they are not zero, in order to avoid identity transformation. | ||
self.assertFalse(torch.allclose(weight_A, torch.zeros_like(weight_A))) | ||
|
||
def test_lora_conv2d_default(self): | ||
# default is True | ||
torch.manual_seed(0) | ||
|
||
model = self.get_model() | ||
config = LoraConfig(target_modules=["conv2d"]) | ||
model = get_peft_model(model, config) | ||
weight_A = model.conv2d.lora_A["default"].weight | ||
weight_B = model.conv2d.lora_B["default"].weight | ||
|
||
# use statistical test to check if weight A is from a uniform distribution | ||
unif = self.get_uniform(weight_A.min().item(), weight_A.max().item()) | ||
_, p_value = stats.kstest(weight_A.detach().flatten().cpu().numpy(), unif.flatten().cpu().numpy()) | ||
self.assertGreater(p_value, 0.5) | ||
|
||
# check that weight A is *not* from a normal distribution | ||
normal = self.get_normal(weight_A.mean().item(), weight_A.std().item()) | ||
_, p_value = stats.kstest(weight_A.detach().flatten().cpu().numpy(), normal.flatten().cpu().numpy()) | ||
self.assertLess(p_value, 0.05) | ||
|
||
# check that weight B is zero | ||
self.assertTrue((weight_B == 0.0).all()) | ||
|
||
def test_lora_conv2d_init_gaussian(self): | ||
# use gaussian init | ||
torch.manual_seed(0) | ||
|
||
model = self.get_model() | ||
config = LoraConfig(target_modules=["conv2d"], init_lora_weights="gaussian") | ||
model = get_peft_model(model, config) | ||
weight_A = model.conv2d.lora_A["default"].weight | ||
weight_B = model.conv2d.lora_B["default"].weight | ||
|
||
# use statistical test to check if weight A is from a normal distribution | ||
normal = self.get_normal(0.0, 1 / config.r) | ||
_, p_value = stats.kstest(weight_A.detach().flatten().cpu().numpy(), normal.flatten().cpu().numpy()) | ||
self.assertGreater(p_value, 0.5) | ||
|
||
# check that weight A is *not* from a uniform distribution | ||
unif = self.get_uniform(weight_A.min().item(), weight_A.max().item()) | ||
_, p_value = stats.kstest(weight_A.detach().flatten().cpu().numpy(), unif.flatten().cpu().numpy()) | ||
self.assertLess(p_value, 0.05) | ||
|
||
# check that weight B is zero | ||
self.assertTrue((weight_B == 0.0).all()) | ||
|
||
def test_lora_conv2d_false(self): | ||
torch.manual_seed(0) | ||
|
||
model = self.get_model() | ||
config = LoraConfig(target_modules=["conv2d"], init_lora_weights=False) | ||
model = get_peft_model(model, config) | ||
weight_B = model.conv2d.lora_B["default"].weight | ||
|
||
# with init_lora_weights=False, weight B should *not* be zero. We don't care so much about the actual values | ||
# as long as they are not zero, in order to avoid identity transformation. | ||
self.assertFalse(torch.allclose(weight_B, torch.zeros_like(weight_B))) |