Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Prepare for PEFT release of v0.14.0 #2258

Merged
merged 1 commit into from
Dec 6, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion examples/pissa_finetuning/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,7 @@ The main advantage of PiSSA is concentrated during the training phase. For a tra
peft_model.save_pretrained(output_dir)
# Given the matrices $A_0$ and $B_0$, initialized by PiSSA and untrained, and the trained matrices $A$ and $B$,
# we can convert these to LoRA by setting $\Delta W = A \times B - A_0 \times B_0 = [A \mid A_0] \times [B \mid -B_0]^T = A'B'$.
peft_model.save_pretrained(output_dir, convert_pissa_to_lora="pissa_init")
peft_model.save_pretrained(output_dir, path_initial_model_for_weight_conversion="pissa_init")

```
This conversion enables the loading of LoRA on top of a standard base model:
Expand Down
2 changes: 1 addition & 1 deletion examples/pissa_finetuning/pissa_finetuning.py
Original file line number Diff line number Diff line change
Expand Up @@ -136,7 +136,7 @@ class ScriptArguments(SFTConfig):
if script_args.convert_pissa_to_lora:
peft_model.save_pretrained(
os.path.join(script_args.output_dir, "pissa_lora"),
convert_pissa_to_lora=os.path.join(script_args.residual_model_name_or_path, "pissa_init"),
path_initial_model_for_weight_conversion=os.path.join(script_args.residual_model_name_or_path, "pissa_init"),
)
else:
peft_model.save_pretrained(
Expand Down
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
from setuptools import find_packages, setup


VERSION = "0.13.3.dev0"
VERSION = "0.14.0"

extras = {}
extras["quality"] = [
Expand Down
2 changes: 1 addition & 1 deletion src/peft/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.

__version__ = "0.13.3.dev0"
__version__ = "0.14.0"

from .auto import (
AutoPeftModel,
Expand Down
10 changes: 0 additions & 10 deletions src/peft/peft_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -229,7 +229,6 @@ def save_pretrained(
selected_adapters: Optional[list[str]] = None,
save_embedding_layers: Union[str, bool] = "auto",
is_main_process: bool = True,
convert_pissa_to_lora: Optional[str] = None,
path_initial_model_for_weight_conversion: Optional[str] = None,
**kwargs: Any,
) -> None:
Expand All @@ -253,8 +252,6 @@ def save_pretrained(
is_main_process (`bool`, *optional*):
Whether the process calling this is the main process or not. Will default to `True`. Will not save the
checkpoint if not on the main process, which is important for multi device setups (e.g. DDP).
convert_pissa_to_lora (`str, *optional*`):
Deprecated. Use `path_initial_model_for_weight_conversion` instead.
path_initial_model_for_weight_conversion (`str, *optional*`):
The path to the initialized adapter, which is obtained after initializing the model with PiSSA or OLoRA
and before performing any training. When `path_initial_model_for_weight_conversion` is not None, the
Expand All @@ -281,13 +278,6 @@ def save_pretrained(
f"You passed an invalid `selected_adapters` arguments, current supported adapter names are"
f" {list(self.peft_config.keys())} - got {selected_adapters}."
)
# TODO: remove deprecated parameter in PEFT v0.14.0
if convert_pissa_to_lora is not None:
warnings.warn(
"`convert_pissa_to_lora` is deprecated and will be removed in a future version. "
"Use `path_initial_model_for_weight_conversion` instead."
)
path_initial_model_for_weight_conversion = convert_pissa_to_lora

def save_mutated_as_lora(peft_config, path_initial_model_for_weight_conversion, output_state_dict, kwargs):
if peft_config.use_rslora and (peft_config.rank_pattern or peft_config.alpha_pattern):
Expand Down
8 changes: 7 additions & 1 deletion tests/test_custom_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -912,7 +912,13 @@ def from_pretrained(cls, model_id, torch_dtype=None):


class PeftCustomModelTester(unittest.TestCase, PeftCommonTester):
"""TODO"""
"""
Implements the tests for custom models.

Most tests should just call the parent class, e.g. test_save_pretrained calls self._test_save_pretrained. Override
this if custom models don't work with the parent test method.

"""

transformers_class = MockTransformerWrapper

Expand Down
38 changes: 0 additions & 38 deletions tests/test_initialization.py
Original file line number Diff line number Diff line change
Expand Up @@ -583,44 +583,6 @@ def test_pissa_alpha_pattern_and_rslora_raises(self, tmp_path):
tmp_path / "pissa-model", path_initial_model_for_weight_conversion=tmp_path / "init-model"
)

# TODO: remove test for deprecated arg in PEFT v0.14.0
def test_lora_pissa_conversion_same_output_after_loading_with_deprecated_arg(self, data, tmp_path):
model = self.get_model()
config = LoraConfig(init_lora_weights="pissa", target_modules=["linear"], r=8)
peft_model = get_peft_model(deepcopy(model), config)
peft_model.peft_config["default"].init_lora_weights = True
peft_model.save_pretrained(tmp_path / "init-model")
peft_model.peft_config["default"].init_lora_weights = "pissa"

tol = 1e-06
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
output_pissa = peft_model(data)[0]

peft_model.save_pretrained(tmp_path / "pissa-model-converted", convert_pissa_to_lora=tmp_path / "init-model")
model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "pissa-model-converted")
output_converted = model_converted(data)[0]

assert torch.allclose(output_pissa, output_converted, atol=tol, rtol=tol)
assert model_converted.peft_config["default"].r == 16
assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 16
assert torch.allclose(
model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
)

# TODO: remove test for deprecated warning in PEFT v0.14.0
def test_lora_pissa_conversion_deprecated_warning(self, data, tmp_path):
model = self.get_model()
config = LoraConfig(init_lora_weights="pissa", target_modules=["linear"], r=8)
peft_model = get_peft_model(deepcopy(model), config)
peft_model.peft_config["default"].init_lora_weights = True
peft_model.save_pretrained(tmp_path / "init-model")
warning_message = "`convert_pissa_to_lora` is deprecated and will be removed in a future version. Use `path_initial_model_for_weight_conversion` instead."
# Test the warning
with pytest.warns(UserWarning, match=warning_message):
peft_model.save_pretrained(
tmp_path / "pissa-model-converted", convert_pissa_to_lora=tmp_path / "init-model"
)

def test_olora_conversion_same_output_after_loading(self, data, tmp_path):
model = self.get_model()
output_base = model(data)[0]
Expand Down
8 changes: 1 addition & 7 deletions tests/test_xlora.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,10 +15,8 @@
import os

import huggingface_hub
import packaging
import pytest
import torch
import transformers
from safetensors.torch import load_file
from transformers import AutoModelForCausalLM, AutoTokenizer

Expand All @@ -27,9 +25,6 @@
from peft.utils import infer_device


uses_transformers_4_45 = packaging.version.parse(transformers.__version__) >= packaging.version.parse("4.45.0")


class TestXlora:
torch_device = infer_device()

Expand Down Expand Up @@ -133,8 +128,7 @@ def test_functional(self, tokenizer, model):
)
assert torch.isfinite(outputs[: inputs.shape[1] :]).all()

# TODO: remove the skip when 4.45 is released!
@pytest.mark.skipif(not uses_transformers_4_45, reason="Requires transformers >= 4.45")
# TODO: fix the xfailing test
@pytest.mark.xfail
def test_scalings_logging_methods(self, tokenizer, model):
model.enable_scalings_logging()
Expand Down
Loading