Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add benchmark vs tiktoken #1582

Merged
merged 2 commits into from
Jul 31, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
117 changes: 117 additions & 0 deletions bindings/python/benches/test_tiktoken.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,117 @@
import os
import time
import argparse
from datasets import load_dataset
from tiktoken.load import load_tiktoken_bpe
import tiktoken
from tokenizers import Tokenizer
from huggingface_hub import hf_hub_download
from typing import Tuple, List

MODEL_ID = "meta-llama/Meta-Llama-3.1-8B"
DATASET = "facebook/xnli"
DATASET_CONFIG = "all_languages"
DEFAULT_THREADS = [2**i for i in range(8) if 2**i <= os.cpu_count()]


def format_byte_size(num_bytes: int) -> Tuple[str, str]:
"""Convert bytes to a human-readable format (KB, MB, GB)."""
num_bytes_f = float(num_bytes)
for unit in ["B", "KB", "MB", "GB", "TB"]:
if num_bytes_f < 1024:
return f"{num_bytes_f:.2f} {unit}", unit
num_bytes_f /= 1024
return f"{num_bytes_f:.2f} PB", "PB"


def benchmark_batch(model: str, documents: list[str]) -> None:
num_threads = int(os.environ["RAYON_NUM_THREADS"])
num_bytes = sum(map(len, map(str.encode, documents)))
readable_size, unit = format_byte_size(num_bytes)
print(f"==============")
print(f"num_threads: {num_threads}, data size: {readable_size}, documents: {len(documents)}")
filename = hf_hub_download(MODEL_ID, "original/tokenizer.model")
mergeable_ranks = load_tiktoken_bpe(filename)
pat_str = r"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"
num_reserved_special_tokens = 256
special_tokens = [
"<|begin_of_text|>",
"<|end_of_text|>",
"<|reserved_special_token_0|>",
"<|reserved_special_token_1|>",
"<|reserved_special_token_2|>",
"<|reserved_special_token_3|>",
"<|start_header_id|>",
"<|end_header_id|>",
"<|reserved_special_token_4|>",
"<|eot_id|>", # end of turn
] + [
f"<|reserved_special_token_{i}|>"
for i in range(5, num_reserved_special_tokens - 5)
]
num_base_tokens = len(mergeable_ranks)
special_tokens = {
token: num_base_tokens + i for i, token in enumerate(special_tokens)
}
enc = tiktoken.Encoding(
name=model,
pat_str=pat_str,
mergeable_ranks=mergeable_ranks,
special_tokens=special_tokens,
)
enc.encode("warmup")

start = time.perf_counter_ns()
enc.encode_ordinary_batch(documents, num_threads=num_threads)
end = time.perf_counter_ns()

readable_size, unit = format_byte_size(num_bytes / (end - start) * 1e9)
print(f"tiktoken \t{readable_size} / s")

hf_enc = Tokenizer.from_pretrained(model)
hf_enc.encode("warmup")

start = time.perf_counter_ns()
hf_enc.encode_batch(documents)
end = time.perf_counter_ns()
readable_size, unit = format_byte_size(num_bytes / (end - start) * 1e9)
print(f"huggingface \t{readable_size} / s")


def test(model: str, dataset: str, dataset_config: str, threads: List[int]):
dataset_xnli = load_dataset(dataset, dataset_config)

input_lengths = [(10, False), (10_000, False), (10_000, True)] # Example input lengths

for num_threads in threads:
os.environ["RAYON_NUM_THREADS"] = str(num_threads)
os.environ["TOKENIZER_PARALLELISM"] = str(num_threads)
os.environ["RAYON_RS_NUM_THREADS"] = str(num_threads)
for length, fuse in input_lengths:
documents = []
for i, item in enumerate(dataset_xnli["train"]):
documents.append("".join(item["premise"].values()))
if i >= length:
break
if fuse:
documents=["".join(documents)]
benchmark_batch(model, documents)


def main():

parser = argparse.ArgumentParser(
prog='bench_tokenizer',
description='Getting a feel for speed when tokenizing',
)
parser.add_argument('-m', '--model', default=MODEL_ID, type=str)
parser.add_argument('-d', '--dataset', default=DATASET, type=str)
parser.add_argument('-ds', '--dataset-config', default=DATASET_CONFIG, type=str)
parser.add_argument('-t', '--threads', nargs='+', default=DEFAULT_THREADS, type=int)
args = parser.parse_args()
test(args.model, args.dataset, args.dataset_config, args.threads)


# Call the function to run the benchmark
if __name__ == "__main__":
main()
Loading