Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[JAX] Replace uses of jnp.array in types with jnp.ndarray. #26703

Merged
merged 1 commit into from
Oct 10, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -381,7 +381,7 @@ def write_metric(summary_writer, metrics, train_time, step, metric_key_prefix="t

def create_learning_rate_fn(
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
) -> Callable[[int], jnp.array]:
) -> Callable[[int], jnp.ndarray]:
"""Returns a linear warmup, linear_decay learning rate function."""
steps_per_epoch = train_ds_size // train_batch_size
num_train_steps = steps_per_epoch * num_train_epochs
Expand Down
2 changes: 1 addition & 1 deletion examples/flax/language-modeling/run_clm_flax.py
Original file line number Diff line number Diff line change
Expand Up @@ -326,7 +326,7 @@ def write_eval_metric(summary_writer, eval_metrics, step):

def create_learning_rate_fn(
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
) -> Callable[[int], jnp.array]:
) -> Callable[[int], jnp.ndarray]:
"""Returns a linear warmup, linear_decay learning rate function."""
steps_per_epoch = train_ds_size // train_batch_size
num_train_steps = steps_per_epoch * num_train_epochs
Expand Down
2 changes: 1 addition & 1 deletion examples/flax/question-answering/run_qa.py
Original file line number Diff line number Diff line change
Expand Up @@ -389,7 +389,7 @@ def cross_entropy_loss(logits, labels):
# region Create learning rate function
def create_learning_rate_fn(
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
) -> Callable[[int], jnp.array]:
) -> Callable[[int], jnp.ndarray]:
"""Returns a linear warmup, linear_decay learning rate function."""
steps_per_epoch = train_ds_size // train_batch_size
num_train_steps = steps_per_epoch * num_train_epochs
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -360,7 +360,7 @@ def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step):

def create_learning_rate_fn(
num_train_steps: int, num_warmup_steps: int, learning_rate: float
) -> Callable[[int], jnp.array]:
) -> Callable[[int], jnp.ndarray]:
"""Returns a linear warmup, linear_decay learning rate function."""
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
decay_fn = optax.linear_schedule(
Expand Down
2 changes: 1 addition & 1 deletion examples/flax/summarization/run_summarization_flax.py
Original file line number Diff line number Diff line change
Expand Up @@ -409,7 +409,7 @@ def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step):

def create_learning_rate_fn(
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
) -> Callable[[int], jnp.array]:
) -> Callable[[int], jnp.ndarray]:
"""Returns a linear warmup, linear_decay learning rate function."""
steps_per_epoch = train_ds_size // train_batch_size
num_train_steps = steps_per_epoch * num_train_epochs
Expand Down
2 changes: 1 addition & 1 deletion examples/flax/text-classification/run_flax_glue.py
Original file line number Diff line number Diff line change
Expand Up @@ -288,7 +288,7 @@ def cross_entropy_loss(logits, labels):

def create_learning_rate_fn(
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
) -> Callable[[int], jnp.array]:
) -> Callable[[int], jnp.ndarray]:
"""Returns a linear warmup, linear_decay learning rate function."""
steps_per_epoch = train_ds_size // train_batch_size
num_train_steps = steps_per_epoch * num_train_epochs
Expand Down
2 changes: 1 addition & 1 deletion examples/flax/token-classification/run_flax_ner.py
Original file line number Diff line number Diff line change
Expand Up @@ -340,7 +340,7 @@ def cross_entropy_loss(logits, labels):

def create_learning_rate_fn(
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
) -> Callable[[int], jnp.array]:
) -> Callable[[int], jnp.ndarray]:
"""Returns a linear warmup, linear_decay learning rate function."""
steps_per_epoch = train_ds_size // train_batch_size
num_train_steps = steps_per_epoch * num_train_epochs
Expand Down
2 changes: 1 addition & 1 deletion examples/flax/vision/run_image_classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -249,7 +249,7 @@ def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step):

def create_learning_rate_fn(
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
) -> Callable[[int], jnp.array]:
) -> Callable[[int], jnp.ndarray]:
"""Returns a linear warmup, linear_decay learning rate function."""
steps_per_epoch = train_ds_size // train_batch_size
num_train_steps = steps_per_epoch * num_train_epochs
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -283,7 +283,7 @@ def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step):

def create_learning_rate_fn(
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
) -> Callable[[int], jnp.array]:
) -> Callable[[int], jnp.ndarray]:
"""Returns a linear warmup, linear_decay learning rate function."""
steps_per_epoch = train_ds_size // train_batch_size
num_train_steps = steps_per_epoch * num_train_epochs
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -214,7 +214,7 @@ def write_eval_metric(summary_writer, eval_metrics, step):

def create_learning_rate_fn(
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
) -> Callable[[int], jnp.array]:
) -> Callable[[int], jnp.ndarray]:
"""Returns a linear warmup, linear_decay learning rate function."""
steps_per_epoch = train_ds_size // train_batch_size
num_train_steps = steps_per_epoch * num_train_epochs
Expand Down
2 changes: 1 addition & 1 deletion src/transformers/models/bart/modeling_flax_bart.py
Original file line number Diff line number Diff line change
Expand Up @@ -217,7 +217,7 @@
"""


def shift_tokens_right(input_ids: jnp.array, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
"""
Shift input ids one token to the right.
"""
Expand Down
2 changes: 1 addition & 1 deletion src/transformers/models/bert/modeling_flax_bert.py
Original file line number Diff line number Diff line change
Expand Up @@ -295,7 +295,7 @@ def __call__(
hidden_states,
attention_mask,
layer_head_mask,
key_value_states: Optional[jnp.array] = None,
key_value_states: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic=True,
output_attentions: bool = False,
Expand Down
2 changes: 1 addition & 1 deletion src/transformers/models/big_bird/modeling_flax_big_bird.py
Original file line number Diff line number Diff line change
Expand Up @@ -316,7 +316,7 @@ def __call__(
hidden_states,
attention_mask,
layer_head_mask,
key_value_states: Optional[jnp.array] = None,
key_value_states: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic=True,
output_attentions: bool = False,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -204,7 +204,7 @@


# Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right
def shift_tokens_right(input_ids: jnp.array, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
"""
Shift input ids one token to the right.
"""
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -216,7 +216,7 @@


# Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right
def shift_tokens_right(input_ids: jnp.array, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
"""
Shift input ids one token to the right.
"""
Expand Down
8 changes: 4 additions & 4 deletions src/transformers/models/electra/modeling_flax_electra.py
Original file line number Diff line number Diff line change
Expand Up @@ -263,7 +263,7 @@ def __call__(
hidden_states,
attention_mask,
layer_head_mask,
key_value_states: Optional[jnp.array] = None,
key_value_states: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic=True,
output_attentions: bool = False,
Expand Down Expand Up @@ -1228,13 +1228,13 @@ def __call__(self, hidden_states, cls_index=None, deterministic: bool = True):
Compute a single vector summary of a sequence hidden states.

Args:
hidden_states (`jnp.array` of shape `[batch_size, seq_len, hidden_size]`):
hidden_states (`jnp.ndarray` of shape `[batch_size, seq_len, hidden_size]`):
The hidden states of the last layer.
cls_index (`jnp.array` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*):
cls_index (`jnp.ndarray` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*):
Used if `summary_type == "cls_index"` and takes the last token of the sequence as classification token.

Returns:
`jnp.array`: The summary of the sequence hidden states.
`jnp.ndarray`: The summary of the sequence hidden states.
"""
# NOTE: this doest "first" type summary always
output = hidden_states[:, 0]
Expand Down
2 changes: 1 addition & 1 deletion src/transformers/models/longt5/modeling_flax_longt5.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,7 @@


# Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right
def shift_tokens_right(input_ids: jnp.array, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
"""
Shift input ids one token to the right.
"""
Expand Down
2 changes: 1 addition & 1 deletion src/transformers/models/marian/modeling_flax_marian.py
Original file line number Diff line number Diff line change
Expand Up @@ -227,7 +227,7 @@ def create_sinusoidal_positions(n_pos, dim):


# Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right
def shift_tokens_right(input_ids: jnp.array, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
"""
Shift input ids one token to the right.
"""
Expand Down
2 changes: 1 addition & 1 deletion src/transformers/models/mt5/modeling_flax_mt5.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@


# Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right
def shift_tokens_right(input_ids: jnp.array, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
"""
Shift input ids one token to the right.
"""
Expand Down
2 changes: 1 addition & 1 deletion src/transformers/models/pegasus/modeling_flax_pegasus.py
Original file line number Diff line number Diff line change
Expand Up @@ -210,7 +210,7 @@


# Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right
def shift_tokens_right(input_ids: jnp.array, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
"""
Shift input ids one token to the right.
"""
Expand Down
2 changes: 1 addition & 1 deletion src/transformers/models/roberta/modeling_flax_roberta.py
Original file line number Diff line number Diff line change
Expand Up @@ -256,7 +256,7 @@ def __call__(
hidden_states,
attention_mask,
layer_head_mask,
key_value_states: Optional[jnp.array] = None,
key_value_states: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic=True,
output_attentions: bool = False,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -258,7 +258,7 @@ def __call__(
hidden_states,
attention_mask,
layer_head_mask,
key_value_states: Optional[jnp.array] = None,
key_value_states: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic=True,
output_attentions: bool = False,
Expand Down
2 changes: 1 addition & 1 deletion src/transformers/models/t5/modeling_flax_t5.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,7 @@


# Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right
def shift_tokens_right(input_ids: jnp.array, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
"""
Shift input ids one token to the right.
"""
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -266,7 +266,7 @@ def __call__(
hidden_states,
attention_mask,
layer_head_mask,
key_value_states: Optional[jnp.array] = None,
key_value_states: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic=True,
output_attentions: bool = False,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -251,7 +251,7 @@ def __call__(
hidden_states,
attention_mask,
layer_head_mask,
key_value_states: Optional[jnp.array] = None,
key_value_states: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic=True,
output_attentions: bool = False,
Expand Down
Loading