Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[core] Refactor of gradient_checkpointing #27020

Merged
merged 16 commits into from
Oct 25, 2023
Merged
19 changes: 16 additions & 3 deletions src/transformers/modeling_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import functools
import gc
import importlib.metadata
import inspect
Expand Down Expand Up @@ -1819,16 +1820,28 @@ def prune_heads(self, heads_to_prune: Dict[int, List[int]]):

self.base_model._prune_heads(heads_to_prune)

def gradient_checkpointing_enable(self):
def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
"""
Activates gradient checkpointing for the current model.

Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
activations".

Args:
gradient_checkpointing_kwargs (dict, *optional*):
Additional keyword arguments passed along to the `torch.utils.checkpoint.checkpoint` function.
"""
if not self.supports_gradient_checkpointing:
raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
self.apply(partial(self._set_gradient_checkpointing, value=True))

if gradient_checkpointing_kwargs is None:
gradient_checkpointing_kwargs = {}

gradient_checkpointing_func = functools.partial(
torch.utils.checkpoint.checkpoint, **gradient_checkpointing_kwargs
)

self.apply(partial(self._set_gradient_checkpointing, gradient_checkpointing_func=gradient_checkpointing_func))

if getattr(self, "_hf_peft_config_loaded", False):
# When using PEFT + gradient checkpointing + Trainer we need to make sure the input has requires_grad=True
Expand All @@ -1845,7 +1858,7 @@ def gradient_checkpointing_disable(self):
activations".
"""
if self.supports_gradient_checkpointing:
self.apply(partial(self._set_gradient_checkpointing, value=False))
self.apply(partial(self._set_gradient_checkpointing, gradient_checkpointing_func=None))
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

WHen we disable gradient checkpointing, I think the module.gradient_checkpointing will still be True.
Let's make module.gradient_checkpointing into a property to be sure we always check if the function is none or not WDYT?

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Property could go at the ModelMixin level ?


if getattr(self, "_hf_peft_config_loaded", False):
self.disable_input_require_grads()
Expand Down
18 changes: 7 additions & 11 deletions src/transformers/models/align/modeling_align.py
Original file line number Diff line number Diff line change
Expand Up @@ -1095,20 +1095,15 @@ def forward(
past_key_value = past_key_values[i] if past_key_values is not None else None

if self.gradient_checkpointing and self.training:

def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, past_key_value, output_attentions)

return custom_forward

layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module),
layer_outputs = self.gradient_checkpointing_func(
layer_module.forward,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
else:
layer_outputs = layer_module(
Expand Down Expand Up @@ -1197,9 +1192,10 @@ def _init_weights(self, module):
module.bias.data.zero_()
module.weight.data.fill_(1.0)

def _set_gradient_checkpointing(self, module, value=False):
def _set_gradient_checkpointing(self, module, gradient_checkpointing_func=None):
if isinstance(module, (AlignTextModel, AlignVisionModel)):
module.gradient_checkpointing = value
module.gradient_checkpointing_func = gradient_checkpointing_func
module.gradient_checkpointing = gradient_checkpointing_func is not None


@add_start_docstrings(
Expand Down
33 changes: 12 additions & 21 deletions src/transformers/models/altclip/modeling_altclip.py
Original file line number Diff line number Diff line change
Expand Up @@ -646,20 +646,15 @@ def forward(
past_key_value = past_key_values[i] if past_key_values is not None else None

if self.gradient_checkpointing and self.training:

def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, past_key_value, output_attentions)

return custom_forward

layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module),
layer_outputs = self.gradient_checkpointing_func(
layer_module.forward,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
else:
layer_outputs = layer_module(
Expand Down Expand Up @@ -960,18 +955,12 @@ def forward(
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:

def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)

return custom_forward

layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(encoder_layer),
layer_outputs = self.gradient_checkpointing_func(
encoder_layer.forward,
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
Expand Down Expand Up @@ -1089,11 +1078,13 @@ def _init_weights(self, module):
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()

def _set_gradient_checkpointing(self, module, value=False):
def _set_gradient_checkpointing(self, module, gradient_checkpointing_func=None):
if isinstance(module, AltCLIPEncoder):
module.gradient_checkpointing = value
module.gradient_checkpointing_func = gradient_checkpointing_func
module.gradient_checkpointing = gradient_checkpointing_func is not None
if isinstance(module, AltRobertaEncoder):
module.gradient_checkpointing = value
module.gradient_checkpointing_func = gradient_checkpointing_func
module.gradient_checkpointing = gradient_checkpointing_func is not None


# Copied from transformers.models.clip.modeling_clip.CLIPVisionTransformer with CLIPVisionTransformer->AltCLIPVisionTransformer,CLIPVisionConfig->AltCLIPVisionConfig,CLIPVisionEmbeddings->AltCLIPVisionEmbeddings,CLIPEncoder->AltCLIPEncoder,CLIP_VISION_INPUTS_DOCSTRING->ALTCLIP_VISION_INPUTS_DOCSTRING
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -336,17 +336,11 @@ def forward(
layer_head_mask = head_mask[i] if head_mask is not None else None

if self.gradient_checkpointing and self.training:

def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)

return custom_forward

layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module),
layer_outputs = self.gradient_checkpointing_func(
layer_module.forward,
hidden_states,
layer_head_mask,
output_attentions,
)
else:
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions)
Expand Down Expand Up @@ -395,9 +389,10 @@ def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> No
module.weight.data.fill_(1.0)

# Copied from transformers.models.vit.modeling_vit.ViTPreTrainedModel._set_gradient_checkpointing with ViT->AST
def _set_gradient_checkpointing(self, module: ASTEncoder, value: bool = False) -> None:
def _set_gradient_checkpointing(self, module: ASTEncoder, gradient_checkpointing_func=None) -> None:
if isinstance(module, ASTEncoder):
module.gradient_checkpointing = value
module.gradient_checkpointing_func = gradient_checkpointing_func
module.gradient_checkpointing = gradient_checkpointing_func is not None


AUDIO_SPECTROGRAM_TRANSFORMER_START_DOCSTRING = r"""
Expand Down
21 changes: 8 additions & 13 deletions src/transformers/models/autoformer/modeling_autoformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -946,9 +946,10 @@ def _init_weights(self, module):
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()

def _set_gradient_checkpointing(self, module, value=False):
def _set_gradient_checkpointing(self, module, gradient_checkpointing_func=None):
if isinstance(module, (AutoformerDecoder, AutoformerEncoder)):
module.gradient_checkpointing = value
module.gradient_checkpointing_func = gradient_checkpointing_func
module.gradient_checkpointing = gradient_checkpointing_func is not None


AUTOFORMER_START_DOCSTRING = r"""
Expand Down Expand Up @@ -1207,18 +1208,12 @@ def forward(
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:

def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)

return custom_forward

layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(encoder_layer),
layer_outputs = self.gradient_checkpointing_func(
encoder_layer.forward,
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
output_attentions,
)
else:
layer_outputs = encoder_layer(
Expand Down Expand Up @@ -1433,8 +1428,8 @@ def custom_forward(*inputs):

return custom_forward

layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
layer_outputs = self.gradient_checkpointing_func(
decoder_layer.forward,
hidden_states,
attention_mask,
encoder_hidden_states,
Expand Down
19 changes: 7 additions & 12 deletions src/transformers/models/bark/modeling_bark.py
Original file line number Diff line number Diff line change
Expand Up @@ -313,9 +313,10 @@ def device(self) -> torch.device:

return get_parameter_device(self)

def _set_gradient_checkpointing(self, module, value=False):
def _set_gradient_checkpointing(self, module, gradient_checkpointing_func=None):
if isinstance(module, BarkCausalModel) or isinstance(module, BarkFineModel) or isinstance(module, BarkModel):
module.gradient_checkpointing = value
module.gradient_checkpointing_func = gradient_checkpointing_func
module.gradient_checkpointing = gradient_checkpointing_func is not None


BARK_MODEL_START_DOCSTRING = """
Expand Down Expand Up @@ -637,20 +638,14 @@ def forward(
all_hidden_states = all_hidden_states + (hidden_states,)

if self.gradient_checkpointing and self.training:

def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, use_cache, output_attentions)

return custom_forward

outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
outputs = self.gradient_checkpointing_func(
block.forward,
hidden_states,
None,
attention_mask,
head_mask[i],
use_cache,
output_attentions,
)
else:
outputs = block(
Expand Down
21 changes: 8 additions & 13 deletions src/transformers/models/bart/modeling_bart.py
Original file line number Diff line number Diff line change
Expand Up @@ -521,9 +521,10 @@ def _init_weights(self, module):
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()

def _set_gradient_checkpointing(self, module, value=False):
def _set_gradient_checkpointing(self, module, gradient_checkpointing_func=None):
if isinstance(module, (BartDecoder, BartEncoder)):
module.gradient_checkpointing = value
module.gradient_checkpointing_func = gradient_checkpointing_func
module.gradient_checkpointing = gradient_checkpointing_func is not None

@property
def dummy_inputs(self):
Expand Down Expand Up @@ -854,18 +855,12 @@ def forward(
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:

def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)

return custom_forward

layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(encoder_layer),
layer_outputs = self.gradient_checkpointing_func(
encoder_layer.forward,
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
output_attentions,
)
else:
layer_outputs = encoder_layer(
Expand Down Expand Up @@ -1118,8 +1113,8 @@ def custom_forward(*inputs):

return custom_forward

layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
layer_outputs = self.gradient_checkpointing_func(
decoder_layer.forward,
hidden_states,
attention_mask,
encoder_hidden_states,
Expand Down
17 changes: 6 additions & 11 deletions src/transformers/models/beit/modeling_beit.py
Original file line number Diff line number Diff line change
Expand Up @@ -510,17 +510,11 @@ def forward(
layer_head_mask = head_mask[i] if head_mask is not None else None

if self.gradient_checkpointing and self.training:

def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)

return custom_forward

layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module),
layer_outputs = self.gradient_checkpointing_func(
layer_module.forward,
hidden_states,
layer_head_mask,
output_attentions,
)
else:
relative_position_bias = (
Expand Down Expand Up @@ -572,9 +566,10 @@ def _init_weights(self, module):
module.bias.data.zero_()
module.weight.data.fill_(1.0)

def _set_gradient_checkpointing(self, module, value=False):
def _set_gradient_checkpointing(self, module, gradient_checkpointing_func=None):
if isinstance(module, BeitEncoder):
module.gradient_checkpointing = value
module.gradient_checkpointing_func = gradient_checkpointing_func
module.gradient_checkpointing = gradient_checkpointing_func is not None


BEIT_START_DOCSTRING = r"""
Expand Down
18 changes: 7 additions & 11 deletions src/transformers/models/bert/modeling_bert.py
Original file line number Diff line number Diff line change
Expand Up @@ -593,20 +593,15 @@ def forward(
past_key_value = past_key_values[i] if past_key_values is not None else None

if self.gradient_checkpointing and self.training:

def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, past_key_value, output_attentions)

return custom_forward

layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module),
layer_outputs = self.gradient_checkpointing_func(
layer_module.forward,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
else:
layer_outputs = layer_module(
Expand Down Expand Up @@ -762,9 +757,10 @@ def _init_weights(self, module):
module.bias.data.zero_()
module.weight.data.fill_(1.0)

def _set_gradient_checkpointing(self, module, value=False):
def _set_gradient_checkpointing(self, module, gradient_checkpointing_func=None):
if isinstance(module, BertEncoder):
module.gradient_checkpointing = value
module.gradient_checkpointing_func = gradient_checkpointing_func
module.gradient_checkpointing = gradient_checkpointing_func is not None


@dataclass
Expand Down
Loading
Loading