Skip to content

hujiecpp/ISTR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This is the project page for the paper:

ISTR: End-to-End Instance Segmentation via Transformers.

Updates

  • (2022.03.09) New codes for ISTR-PCA, ISTR-DCT, and ISTR-SMT with better performance and speed have been released.
  • (2021.05.03) The project page for ISTR is avaliable.
Method backbone fps box AP mask AP link
ISTR-PCA R50-FPN 13.0 46.7 39.8 7p58 (google drive)
ISTR-DCT R50-FPN 12.5 46.9 40.2 ibi3
ISTR-SMT R50-FPN 10.4 47.4 41.7 73bs (google drive)
ISTR-PCA R101-FPN 10.7 48.0 41.1 5rcj
ISTR-DCT R101-FPN 10.3 48.3 41.6 0mdl (google drive)
ISTR-SMT R101-FPN 8.9 48.8 42.9 qbr8 (google drive)
ISTR-SMT Swin-L 3.5 55.8 49.2 nuj8 (google drive)
ISTR-SMT@1088 Swin-L 2.9 56.4 49.7 9uj8

PWC

  • The inference time is evaluated with a single 2080Ti GPU.
  • We use the models pre-trained on ImageNet using torchvision. The ImageNet pre-trained ResNet-101 backbone is obtained from SparseR-CNN.

Installation

The codes are built on top of Detectron2, SparseR-CNN, and AdelaiDet.

Requirements

  • Python=3.8
  • PyTorch=1.6.0, torchvision=0.7.0, cudatoolkit=10.1
  • OpenCV for visualization

Steps

  1. Install the repository (we recommend to use Anaconda for installation.)
conda create -n ISTR python=3.8 -y
conda activate ISTR
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 -c pytorch
or (conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch)
pip install opencv-python
pip install scipy
pip install shapely
git clone https://github.com/hujiecpp/ISTR.git
cd ISTR
python setup.py build develop
  1. Link coco dataset path
ln -s /coco_dataset_path/coco ./datasets
  1. Train ISTR (e.g., with ResNet50 backbone)
python projects/ISTR/train_net.py --num-gpus 4 --config-file projects/ISTR/configs/ISTR-R50-3x.yaml
  1. Evaluate ISTR (e.g., with ResNet50 backbone)
python projects/ISTR/train_net.py --num-gpus 4 --config-file projects/ISTR/configs/ISTR-R50-3x.yaml --eval-only MODEL.WEIGHTS ./output/model_final.pth
  1. Visualize the detection and segmentation results (e.g., with ResNet50 backbone)
python demo/demo.py --config-file projects/ISTR/configs/ISTR-R50-3x.yaml --input input1.jpg --output ./output --confidence-threshold 0.4 --opts MODEL.WEIGHTS ./output/model_final.pth

Citation

If our paper helps your research, please cite it in your publications:

@article{hu2021istr,
  title={Istr: End-to-end instance segmentation with transformers},
  author={Hu, Jie and Cao, Liujuan and Lu, Yao and Zhang, ShengChuan and Wang, Yan and Li, Ke and Huang, Feiyue and Shao, Ling and Ji, Rongrong},
  journal={arXiv preprint arXiv:2105.00637},
  year={2021}
}
@article{hu2024istr,
  author={Hu, Jie and Lu, Yao and Zhang, Shengchuan and Cao, Liujuan},
  title={ISTR: Mask-Embedding-Based Instance Segmentation Transformer},
  journal={IEEE Transactions on Image Processing},  
  year={2024},
  volume={33},
  pages={2895-2907},
  doi={10.1109/TIP.2024.3385980}
}

About

ISTR: End-to-End Instance Segmentation with Transformers (https://arxiv.org/abs/2105.00637)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published