Skip to content

Commit

Permalink
Feat: add pair table model to pytorch (deepmodeling#3192)
Browse files Browse the repository at this point in the history
Migrated from this
[PR](dptech-corp/deepmd-pytorch#174). This is to
reimplement the PairTab Model in Pytorch.

Notes:

1. Different from the tensorflow version, the pytorch version abstracts
away all the post energy conversion operations (force, virial).
2. Added extrapolation when `rcut` > `rmax`. The pytorch version
overwrite energy beyond extrapolation endpoint to `0`. These features
are not available in the tensorflow version. The extrapolation uses a
cubic spline form, the 1st order derivation for the starting point is
estimated using the last two rows in the user defined table. See example
below:


![img_v3_027k_b50c690d-dc2d-4803-bd2c-2e73aa3c73fg](https://github.com/deepmodeling/deepmd-kit/assets/137014849/f3efa4d3-795e-4ff8-acdc-642227f0e19c)


![img_v3_027k_8de38597-ef4e-4e5b-989e-dbd13cc93fag](https://github.com/deepmodeling/deepmd-kit/assets/137014849/493da26d-f01d-4dd0-8520-ea2d84e7b548)


![img_v3_027k_f8268564-3f5d-49e6-91d6-169a61d9347g](https://github.com/deepmodeling/deepmd-kit/assets/137014849/b8ad4d4d-a4a4-40f0-94d1-810006e7175b)


![img_v3_027k_3966ef67-dd5e-4f48-992e-c2763311451g](https://github.com/deepmodeling/deepmd-kit/assets/137014849/27f31e79-13c8-4ce8-9911-b4cc0ac8188c)

---------

Co-authored-by: Anyang Peng <aisi_ap@Anyangs-Laptop.local>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • Loading branch information
3 people authored Jan 31, 2024
1 parent d2edb77 commit afb440a
Show file tree
Hide file tree
Showing 4 changed files with 914 additions and 5 deletions.
312 changes: 312 additions & 0 deletions deepmd/pt/model/model/pair_tab.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,312 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
from typing import (
Dict,
List,
Optional,
Union,
)

import torch
from torch import (
nn,
)

from deepmd.model_format import (
FittingOutputDef,
OutputVariableDef,
)
from deepmd.utils.pair_tab import (
PairTab,
)

from .atomic_model import (
AtomicModel,
)


class PairTabModel(nn.Module, AtomicModel):
"""Pairwise tabulation energy model.
This model can be used to tabulate the pairwise energy between atoms for either
short-range or long-range interactions, such as D3, LJ, ZBL, etc. It should not
be used alone, but rather as one submodel of a linear (sum) model, such as
DP+D3.
Do not put the model on the first model of a linear model, since the linear
model fetches the type map from the first model.
At this moment, the model does not smooth the energy at the cutoff radius, so
one needs to make sure the energy has been smoothed to zero.
Parameters
----------
tab_file : str
The path to the tabulation file.
rcut : float
The cutoff radius.
sel : int or list[int]
The maxmum number of atoms in the cut-off radius.
"""

def __init__(
self, tab_file: str, rcut: float, sel: Union[int, List[int]], **kwargs
):
super().__init__()
self.tab_file = tab_file
self.rcut = rcut

self.tab = PairTab(self.tab_file, rcut=rcut)
self.ntypes = self.tab.ntypes

tab_info, tab_data = self.tab.get() # this returns -> Tuple[np.array, np.array]
self.tab_info = torch.from_numpy(tab_info)
self.tab_data = torch.from_numpy(tab_data)

# self.model_type = "ener"
# self.model_version = MODEL_VERSION ## this shoud be in the parent class

if isinstance(sel, int):
self.sel = sel
elif isinstance(sel, list):
self.sel = sum(sel)
else:
raise TypeError("sel must be int or list[int]")

def get_fitting_output_def(self) -> FittingOutputDef:
return FittingOutputDef(
[
OutputVariableDef(
name="energy", shape=[1], reduciable=True, differentiable=True
)
]
)

def get_rcut(self) -> float:
return self.rcut

def get_sel(self) -> int:
return self.sel

def distinguish_types(self) -> bool:
# to match DPA1 and DPA2.
return False

def forward_atomic(
self,
extended_coord,
extended_atype,
nlist,
mapping: Optional[torch.Tensor] = None,
do_atomic_virial: bool = False,
) -> Dict[str, torch.Tensor]:
self.nframes, self.nloc, self.nnei = nlist.shape

# this will mask all -1 in the nlist
masked_nlist = torch.clamp(nlist, 0)

atype = extended_atype[:, : self.nloc] # (nframes, nloc)
pairwise_dr = self._get_pairwise_dist(
extended_coord
) # (nframes, nall, nall, 3)
pairwise_rr = pairwise_dr.pow(2).sum(-1).sqrt() # (nframes, nall, nall)

self.tab_data = self.tab_data.reshape(
self.tab.ntypes, self.tab.ntypes, self.tab.nspline, 4
)

# to calculate the atomic_energy, we need 3 tensors, i_type, j_type, rr
# i_type : (nframes, nloc), this is atype.
# j_type : (nframes, nloc, nnei)
j_type = extended_atype[
torch.arange(extended_atype.size(0))[:, None, None], masked_nlist
]

# slice rr to get (nframes, nloc, nnei)
rr = torch.gather(pairwise_rr[:, : self.nloc, :], 2, masked_nlist)

raw_atomic_energy = self._pair_tabulated_inter(nlist, atype, j_type, rr)

atomic_energy = 0.5 * torch.sum(
torch.where(
nlist != -1, raw_atomic_energy, torch.zeros_like(raw_atomic_energy)
),
dim=-1,
)

return {"energy": atomic_energy}

def _pair_tabulated_inter(
self,
nlist: torch.Tensor,
i_type: torch.Tensor,
j_type: torch.Tensor,
rr: torch.Tensor,
) -> torch.Tensor:
"""Pairwise tabulated energy.
Parameters
----------
nlist : torch.Tensor
The unmasked neighbour list. (nframes, nloc)
i_type : torch.Tensor
The integer representation of atom type for all local atoms for all frames. (nframes, nloc)
j_type : torch.Tensor
The integer representation of atom type for all neighbour atoms of all local atoms for all frames. (nframes, nloc, nnei)
rr : torch.Tensor
The salar distance vector between two atoms. (nframes, nloc, nnei)
Returns
-------
torch.Tensor
The masked atomic energy for all local atoms for all frames. (nframes, nloc, nnei)
Raises
------
Exception
If the distance is beyond the table.
Notes
-----
This function is used to calculate the pairwise energy between two atoms.
It uses a table containing cubic spline coefficients calculated in PairTab.
"""
rmin = self.tab_info[0]
hh = self.tab_info[1]
hi = 1.0 / hh

self.nspline = int(self.tab_info[2] + 0.1)

uu = (rr - rmin) * hi # this is broadcasted to (nframes,nloc,nnei)

# if nnei of atom 0 has -1 in the nlist, uu would be 0.
# this is to handle the nlist where the mask is set to 0, so that we don't raise exception for those atoms.
uu = torch.where(nlist != -1, uu, self.nspline + 1)

if torch.any(uu < 0):
raise Exception("coord go beyond table lower boundary")

idx = uu.to(torch.int)

uu -= idx

table_coef = self._extract_spline_coefficient(
i_type, j_type, idx, self.tab_data, self.nspline
)
table_coef = table_coef.reshape(self.nframes, self.nloc, self.nnei, 4)
ener = self._calcualte_ener(table_coef, uu)

# here we need to overwrite energy to zero at rcut and beyond.
mask_beyond_rcut = rr >= self.rcut
# also overwrite values beyond extrapolation to zero
extrapolation_mask = rr >= self.tab.rmin + self.nspline * self.tab.hh
ener[mask_beyond_rcut] = 0
ener[extrapolation_mask] = 0

return ener

@staticmethod
def _get_pairwise_dist(coords: torch.Tensor) -> torch.Tensor:
"""Get pairwise distance `dr`.
Parameters
----------
coords : torch.Tensor
The coordinate of the atoms shape of (nframes * nall * 3).
Returns
-------
torch.Tensor
The pairwise distance between the atoms (nframes * nall * nall * 3).
Examples
--------
coords = torch.tensor([[
[0,0,0],
[1,3,5],
[2,4,6]
]])
dist = tensor([[
[[ 0, 0, 0],
[-1, -3, -5],
[-2, -4, -6]],
[[ 1, 3, 5],
[ 0, 0, 0],
[-1, -1, -1]],
[[ 2, 4, 6],
[ 1, 1, 1],
[ 0, 0, 0]]
]])
"""
return coords.unsqueeze(2) - coords.unsqueeze(1)

@staticmethod
def _extract_spline_coefficient(
i_type: torch.Tensor,
j_type: torch.Tensor,
idx: torch.Tensor,
tab_data: torch.Tensor,
nspline: int,
) -> torch.Tensor:
"""Extract the spline coefficient from the table.
Parameters
----------
i_type : torch.Tensor
The integer representation of atom type for all local atoms for all frames. (nframes, nloc)
j_type : torch.Tensor
The integer representation of atom type for all neighbour atoms of all local atoms for all frames. (nframes, nloc, nnei)
idx : torch.Tensor
The index of the spline coefficient. (nframes, nloc, nnei)
tab_data : torch.Tensor
The table storing all the spline coefficient. (ntype, ntype, nspline, 4)
nspline : int
The number of splines in the table.
Returns
-------
torch.Tensor
The spline coefficient. (nframes, nloc, nnei, 4), shape may be squeezed.
"""
# (nframes, nloc, nnei)
expanded_i_type = i_type.unsqueeze(-1).expand(-1, -1, j_type.shape[-1])

# (nframes, nloc, nnei, nspline, 4)
expanded_tab_data = tab_data[expanded_i_type, j_type]

# (nframes, nloc, nnei, 1, 4)
expanded_idx = idx.unsqueeze(-1).unsqueeze(-1).expand(-1, -1, -1, -1, 4)

# handle the case where idx is beyond the number of splines
clipped_indices = torch.clamp(expanded_idx, 0, nspline - 1).to(torch.int64)

# (nframes, nloc, nnei, 4)
final_coef = torch.gather(expanded_tab_data, 3, clipped_indices).squeeze()

# when the spline idx is beyond the table, all spline coefficients are set to `0`, and the resulting ener corresponding to the idx is also `0`.
final_coef[expanded_idx.squeeze() > nspline] = 0
return final_coef

@staticmethod
def _calcualte_ener(coef: torch.Tensor, uu: torch.Tensor) -> torch.Tensor:
"""Calculate energy using spline coeeficients.
Parameters
----------
coef : torch.Tensor
The spline coefficients. (nframes, nloc, nnei, 4)
uu : torch.Tensor
The atom displancemnt used in interpolation and extrapolation (nframes, nloc, nnei)
Returns
-------
torch.Tensor
The atomic energy for all local atoms for all frames. (nframes, nloc, nnei)
"""
a3, a2, a1, a0 = torch.unbind(coef, dim=-1)
etmp = (a3 * uu + a2) * uu + a1 # this should be elementwise operations.
ener = etmp * uu + a0 # this energy has the extrapolated value when rcut > rmax
return ener
Loading

0 comments on commit afb440a

Please sign in to comment.