Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

docs(presentations): update overview slides #9685

Merged
merged 12 commits into from
Jul 24, 2024
Binary file added docs/presentations/overview/img/future.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added docs/presentations/overview/img/future2.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added docs/presentations/overview/img/layers.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added docs/presentations/overview/img/uis.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Original file line number Diff line number Diff line change
Expand Up @@ -9,27 +9,159 @@ format:
footer: <https://ibis-project.org>
# preview-links: true
chalkboard: true
incremental: true
incremental: false
# https://quarto.org/docs/presentations/revealjs/themes.html#using-themes
theme: dark
scrollable: true
# smaller: true
---

# what
# composable data systems

## A Python perspective

["The Road to Composable Data Systems: Thoughts on the Last 15 Years and the Future"](https://wesmckinney.com/blog/looking-back-15-years) by Wes McKinney:

> **pandas solved many problems that database systems also solve**, but almost no one in the data science ecosystem had the expertise to build a data frame library using database techniques. Eagerly-evaluated APIs (as opposed to “lazy” ones) make it more difficult to do efficient “query” planning and execution. **Data interoperability with other systems is always going to be painful**...

## A Python perspective

["The Road to Composable Data Systems: Thoughts on the Last 15 Years and the Future"](https://wesmckinney.com/blog/looking-back-15-years) by Wes McKinney:

> ...**unless faster, more efficient “standards” for interoperability are created**.

## Layers

["The Composable Codex"](https://voltrondata.com/codex) by Voltron Data:

![layers](img/layers.png)

## Future

["The Composable Codex"](https://voltrondata.com/codex) by Voltron Data:

![future](img/future2.png)

## Why composable data systems?

Efficiency:

- time
- money
- data mesh
- engineering productivity
- avoid vendor lock-in

## How can you implement it? {.smaller}

Choose your stack:

:::: {.columns}

::: {.column width="33%"}
**UI**:

- Ibis (Python)
- dplyr (R)
- SQL
- ...
:::

::: {.column width="33%"}
**Execution engine**:

- DuckDB
- DataFusion
- Polars
- Spark
- Trino
- ClickHouse
- Snowflake
- Databricks
- Theseus
- ...
:::

::: {.column width="33%"}
**Storage**:

- Iceberg
- Delta Lake
- Hudi
- Hive-partitioned Parquet files
- ...
:::

::::

## Choose your stack (there's more) {.smaller}

Additionally, choose tools for:

**Orchestration**:

- Airflow
- Prefect
- Dagster
- Kedro
- SQLMesh
- dbt
- ...

**Ingestion**:

- dlt
- Airbyte
- requests
- Ibis
- ...

**Visualization**:

- Altair
- plotnine
- Plotly
- seaborn
- matplotlib
- ...

**Dashboarding**:

- Streamlit
- Quarto dashboards
- Shiny for Python
- Dash
- ...

**Testing**:

- Great Expectations
- Pandera
- Pytest
- assert statements
- ...

**CLI**:

- Click
- Typer
- argparse
- ...

# what is Ibis?

## Ibis is a Python library for:

- exploratory data analysis (EDA)
- analytics
- data engineering
- machine learning
- building your own library (e.g. [Google BigFrames](https://github.com/googleapis/python-bigquery-dataframes))
- building your own library
- ...

::: {.fragment}
::: {.r-fit-text}
development to production with the same API
***development to production with the same API***
:::
:::

Expand Down Expand Up @@ -122,18 +254,19 @@ t.group_by("species", "island").agg(count=t.count()).order_by("count")

:::

## how it works
## How it works

Ibis compiles down to SQL or dataframe code:

```{python}
#| echo: false

import os
import sys
sys.path.append(os.path.abspath(".."))

sys.path.append(os.path.abspath("../.."))

from backends_sankey import fig

fig.show()
```

Expand Down Expand Up @@ -199,7 +332,7 @@ Analyzing 10M+ rows from 4+ data sources.

# why

## dataframe lore
## Dataframe lore {.smaller}

::: {.fragment .fade-in-then-semi-out}
Dataframes first appeared in the `S` programming language (*in 1991!*), then evolved into the `R` programming language.
Expand All @@ -225,7 +358,7 @@ This leads to data scientists frequently "throwing their work over the wall" to
But what if there were a new [standard](https://xkcd.com/927/)?
:::

## Ibis origins
## Ibis origins {.smaller}

::: {.fragment .fade-left}
from [Apache Arrow and the "10 Things I Hate About pandas"](https://wesmckinney.com/blog/apache-arrow-pandas-internals/) by Wes McKinney
Expand All @@ -235,7 +368,7 @@ from [Apache Arrow and the "10 Things I Hate About pandas"](https://wesmckinney.
> ...in 2015, I started the Ibis project...to create a pandas-friendly deferred expression system for static analysis and compilation [of] these types of [query planned, multicore execution] operations. Since an efficient multithreaded in-memory engine for pandas was not available when I started Ibis, I instead focused on building compilers for SQL engines (Impala, PostgreSQL, SQLite), similar to the R dplyr package. Phillip Cloud from the pandas core team has been actively working on Ibis with me for quite a long time.
:::

## two world problem {auto-animate="true"}
## Two world problem {auto-animate="true"}

::: {.nonincremental}
:::: {.columns}
Expand All @@ -251,7 +384,7 @@ Python:
::::
:::

## two world problem {auto-animate="true"}
## Two world problem {auto-animate="true"}

::: {.nonincremental}
:::: {.columns}
Expand All @@ -271,7 +404,7 @@ Python:
::::
:::

## two world problem {auto-animate="true"}
## Two world problem {auto-animate="true"}

::: {.nonincremental}
:::: {.columns}
Expand All @@ -293,7 +426,7 @@ Python:
::::
:::

## two world problem {auto-animate="true"}
## Two world problem {auto-animate="true"}

::: {.nonincremental}
:::: {.columns}
Expand All @@ -317,7 +450,7 @@ Python:
::::
:::

## two world problem {auto-animate="true"}
## Two world problem {auto-animate="true"}

::: {.nonincremental}
:::: {.columns}
Expand All @@ -343,7 +476,7 @@ Python:
::::
:::

## two world problem {auto-animate="true"}
## Two world problem {auto-animate="true"}

::: {.nonincremental}
:::: {.columns}
Expand Down Expand Up @@ -375,19 +508,40 @@ SQL:

## Python dataframe history {.smaller}

::: {.incremental}

- **pandas** (2008): dataframes in Python
- **Spark** (2009): distributed dataframes with PySpark
- **Dask** (2014): distributed pandas dataframes
- **Vaex** (2014): multicore dataframes in Python via C++
- [**Ibis**]{style="color:#7C65A0"} (2015): dataframes in Python with SQL-like syntax
- [**Ibis**]{style="color:#7C65A0"} (2015): backend-agnostic dataframes in Python
- **cuDF** (2017): pandas API on GPUs
- **Modin** (2018): pandas API on Ray/Dask
- **Koalas** (2019): pandas API on Spark, later renamed "pandas API on Spark"
- **Polars** (2020): multicore dataframes in Python via Rust
- [**Ibis**]{style="color:#7C65A0"} (2022): Ibis invested in heavily by Voltron Data
- **Snowpark Python** (2022): PySpark-like dataframes on Snowflake
- **Daft** (2022): distributed dataframes in Python via Rust
- **BigQuery DataFrames** (2023): pandas API on Google BigQuery (via [Ibis]{style="color:#7C65A0"}!)
- **Snowpark pandas API** (2024): pandas API on Snowflake
- [**SQLFrame**]{style="color:#7C65A0"} (2024): backend-agnostic dataframes in Python (PySpark API)
- **DataFusion dataframes** (2024): multicore dataframes in Python via Rust

:::

## Obligatory standards xkcd

![standards](https://imgs.xkcd.com/comics/standards.png)

## Standards and composability

All Python dataframe libraries that are not Ibis (or SQLFrame) **lock you into an execution engine**.

::: {.fragment}
::: {.r-fit-text}
***Good [standards are composable]{style="color:#7C65A0"} and adopted by competitors.***
:::
:::

## Python dataframe history (aside) {.smaller}

Expand All @@ -411,6 +565,7 @@ pandas clones:
::: {.column width=33%}
PySpark clones:

- [SQLFrame]{style="color:#7C65A0"}
- Snowpark Python (sort of)
- DuckDB Spark API
- SQLGlot Spark API
Expand All @@ -419,14 +574,16 @@ PySpark clones:
::: {.column width=33%}
something else:

- Ibis
- [Ibis]{style="color:#7C65A0"}
- Polars
- Daft
- DataFusion
:::

::::
:::

## database history
## Database history

- they got faster

Expand Down Expand Up @@ -544,7 +701,7 @@ penguins.group_by(["species", "island"]).agg(penguins.count().name("count"))

A distributed SQL query engine.

## and more!
## ...and more!

:::: {.columns}

Expand Down Expand Up @@ -576,10 +733,9 @@ New backends are easy to add!^\*^
^\*^usually
:::


# how

## try it out now
## Try it out now!

Install:

Expand Down
Loading