Skip to content

Commit

Permalink
modify some headers and rebuild
Browse files Browse the repository at this point in the history
  • Loading branch information
ibn-salem committed Feb 27, 2018
1 parent e6342c8 commit d84eb28
Show file tree
Hide file tree
Showing 70 changed files with 140 additions and 223 deletions.
4 changes: 2 additions & 2 deletions 01-intro.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -158,7 +158,7 @@ Importantly, enhancer-promoter interactions seem to be mostly constrained within

Altogether, there is accumulating evidence that TADs are fundamental units of chromosome organization [@Dixon2016]

### Hierarchy of domain-like structures across genomic-length scales
### Hierarchy of domain structures across genomic length scales

Globally, higher-order interactions between different TADs leads to a tree-like hierarchy of TADs and meta-TADs across genomic scales up to the range of entire chromosomes [@Fraser2015].
Similar to A/B-compartments, these tree structures correlate with epigenetic marks and expression changes during cell differentiation [@Fraser2015].
Expand Down Expand Up @@ -233,7 +233,7 @@ TADs form clusters by their epigenomic type into A/B compartments, and coalescen
Proximity ligation experiments, like Hi-C, measure contact frequencies as average over millions of cells in the sample. Therefore, identified contacts might be present only in a subset of cells. Furthermore, specific contacts could be very dynamic over short time-scales in individual cells.
While recent methodological advances allow studying of variation across individual cells (discussed in section \@ref(single-cell)), initial studies focused on the differences of genome folding across cell cycle and cell differentiation.

### Dynamics across cell cycle
### Dynamics across the cell cycle

It is important to keep in mind how chromosome folding changes during cell division. Spatial organization is generally studied in non-synchronous cells, of which interphase cells make up the biggest proportion [@Bouwman2015].
In interphase, chromosomes are decondensed and hierarchically organized into territories, compartments, and TADs as described above.
Expand Down
47 changes: 0 additions & 47 deletions bib/PhDflt.bib
Original file line number Diff line number Diff line change
Expand Up @@ -1041,23 +1041,6 @@ @article{Fullwood2009
volume = {462},
year = {2009}
}
@article{Hnisz2017,
abstract = {Phase-separated multi-molecular assemblies provide a general regulatory mechanism to compartmentalize biochemical reactions within cells. We propose that a phase separation model explains established and recently described features of transcriptional control. These features include the formation of super-enhancers, the sensitivity of super-enhancers to perturbation, the transcriptional bursting patterns of enhancers, and the ability of an enhancer to produce simultaneous activation at multiple genes. This model provides a conceptual framework to further explore principles of gene control in mammals.},
author = {Hnisz, Denes and Shrinivas, Krishna and Young, Richard A. and Chakraborty, Arup K. and Sharp, Phillip A.},
doi = {10.1016/j.cell.2017.02.007},
file = {:home/ibnsalem/Mendeley/Hnisz et al. - 2017 - A Phase Separation Model for Transcriptional Control.pdf:pdf},
issn = {10974172},
journal = {Cell},
keywords = {bursting,co-operativity,enhancer,gene control,nuclear body,phase separation,super-enhancer,transcription,transcriptional burst},
number = {1},
pages = {13--23},
pmid = {28340338},
publisher = {Elsevier Inc.},
title = {{A Phase Separation Model for Transcriptional Control}},
url = {http://dx.doi.org/10.1016/j.cell.2017.02.007},
volume = {169},
year = {2017}
}
@article{Barrington2017,
annote = {NULL},
author = {Barrington, Christopher and Finn, Ronald and Hadjur, Suzana},
Expand Down Expand Up @@ -8260,22 +8243,6 @@ @article{Pevzner2003
volume = {100},
year = {2003}
}
@article{Aranda2015,
abstract = {The Polycomb group (PcG) of proteins defines a subset of factors that physically associate and function to maintain the positional identity of cells from the embryo to adult stages. PcG has long been considered a paradigmatic model for epigenetic maintenance of gene transcription programs. Despite intensive research efforts to unveil the molecular mechanisms of action of PcG proteins, several fundamental questions remain unresolved: How many different PcG complexes exist in mammalian cells? How are PcG complexes targeted to specific loci? How does PcG regulate transcription? In this review, we discuss the diversity of PcG complexes in mammalian cells, examine newly identified modes of recruitment to chromatin, and highlight the latest insights into the molecular mechanisms underlying the function of PcGs in transcription regulation and three-dimensional chromatin conformation.},
author = {Aranda, S. and Mas, G. and {Di Croce}, L.},
doi = {10.1126/sciadv.1500737},
file = {:home/ibnsalem/Mendeley/Aranda, Mas, Di Croce - 2015 - Regulation of gene transcription by Polycomb proteins.pdf:pdf},
issn = {2375-2548},
journal = {Science Advances},
month = {dec},
number = {11},
pages = {e1500737--e1500737},
publisher = {American Association for the Advancement of Science},
title = {{Regulation of gene transcription by Polycomb proteins}},
url = {http://advances.sciencemag.org/cgi/doi/10.1126/sciadv.1500737},
volume = {1},
year = {2015}
}
@article{Giorgio2015,
author = {Giorgio, Elisa and Robyr, Daniel and Spielmann, Malte and Ferrero, Enza and {Di Gregorio}, Eleonora and Imperiale, Daniele and Vaula, Giovanna and Stamoulis, Georgios and Santoni, Federico and Atzori, Cristiana and Gasparini, Laura and Ferrera, Denise and Canale, Claudio and Guipponi, Michel and Pennacchio, Len A. and Antonarakis, Stylianos E. and Brussino, Alessandro and Brusco, Alfredo},
doi = {10.1093/hmg/ddv065},
Expand Down Expand Up @@ -8595,20 +8562,6 @@ @article{Schreiber2017
title = {{Nucleotide sequence and DNaseI sensitivity are predictive of 3D chromatin architecture}},
year = {2017}
}
@article{Nagano2017,
author = {Nagano, Takashi and Lubling, Yaniv and V{\'{a}}rnai, Csilla and Dudley, Carmel and Leung, Wing and Baran, Yael and Mendelson-cohen, Netta},
doi = {10.1038/nature23001},
file = {:home/ibnsalem/Mendeley/Nagano et al. - 2017 - Cell-cycle dynamics of chromosomal organization at single-cell resolution.pdf:pdf},
issn = {0028-0836},
journal = {Nature Publishing Group},
number = {7661},
pages = {61--67},
publisher = {Nature Publishing Group},
title = {{Cell-cycle dynamics of chromosomal organization at single-cell resolution}},
url = {http://dx.doi.org/10.1038/nature23001},
volume = {547},
year = {2017}
}
@article{Hnisz2016a,
author = {Hnisz, Denes and Day, Daniel S. and Young, Richard A.},
doi = {10.1016/j.cell.2016.10.024},
Expand Down
36 changes: 0 additions & 36 deletions bib/PhDfltClean.bib
Original file line number Diff line number Diff line change
Expand Up @@ -63,18 +63,6 @@ @article{Anger2014
year = {2014}
}

@article{Aranda2015,
author = {Aranda, S. and Mas, G. and {Di Croce}, L.},
doi = {10.1126/sciadv.1500737},
journal = {Science Advances},
number = {11},
pages = {e1500737--e1500737},
publisher = {American Association for the Advancement of Science},
title = {Regulation of gene transcription by Polycomb proteins},
volume = {1},
year = {2015}
}

@article{GTExConsortium2015,
author = {Ardlie, Kristin G. and DeLuca, David S. and Segr{\`{e}}, Ayellet V. and Sullivan, Timothy J. and Young, Taylor R. and Gelfand, Ellen T. and Trowbridge, Casandra A. and Maller, Julian B. and Tukiainen, Taru and Lek, Monkol and Ward, Lucas D. and Kheradpour, Pouya and Iriarte, Benjamin and Meng, Yan and Palmer, Cameron D. and Esko, T{\~{o}}nu and Winckler, Wendy and Hirschhorn, Joel N. and Kellis, Manolis and others},
doi = {10.1126/science.1262110},
Expand Down Expand Up @@ -1500,18 +1488,6 @@ @article{Hnisz2016a
year = {2016}
}

@article{Hnisz2017,
author = {Hnisz, Denes and Shrinivas, Krishna and Young, Richard A. and Chakraborty, Arup K. and Sharp, Phillip A.},
doi = {10.1016/j.cell.2017.02.007},
journal = {Cell},
number = {1},
pages = {13--23},
publisher = {Elsevier Inc.},
title = {A Phase Separation Model for Transcriptional Control},
volume = {169},
year = {2017}
}

@article{Hnisz2016,
author = {Hnisz, Denes and Weintraub, Abraham S and Day, Daniel S and Valton, Anne-laure and Bak, Rasmus O and Li, Charles H and Goldmann, Johanna and Lajoie, Bryan R and Fan, Zi Peng and Sigova, Alla A and Reddy, Jessica and Borges-Rivera, Diego and Lee, Tong Ihn and Jaenisch, Rudolf and Porteus, Matthew H and Dekker, Job and Young, Richard A},
doi = {10.1126/science.aad9024},
Expand Down Expand Up @@ -2361,18 +2337,6 @@ @article{Nagano2013
year = {2013}
}

@article{Nagano2017,
author = {Nagano, Takashi and Lubling, Yaniv and V{\'{a}}rnai, Csilla and Dudley, Carmel and Leung, Wing and Baran, Yael and Mendelson-cohen, Netta},
doi = {10.1038/nature23001},
journal = {Nature Publishing Group},
number = {7661},
pages = {61--67},
publisher = {Nature Publishing Group},
title = {Cell-cycle dynamics of chromosomal organization at single-cell resolution},
volume = {547},
year = {2017}
}

@article{Nagy2016,
author = {Nagy, Gergely and Czipa, Erik and Steiner, L{\'{a}}szl{\'{o}} and Nagy, Tibor and Pongor, S{\'{a}}ndor and Nagy, L{\'{a}}szl{\'{o}} and Barta, Endre},
doi = {10.1186/s12864-016-2940-7},
Expand Down
4 changes: 2 additions & 2 deletions docs/1-1-regulation-of-expression.html
Original file line number Diff line number Diff line change
Expand Up @@ -78,12 +78,12 @@
<li class="chapter" data-level="1.4.1" data-path="1-4-hierarchy-of-chromatin-3d-structure.html"><a href="1-4-hierarchy-of-chromatin-3d-structure.html#chromosomal-territories-and-inter-chromosomal-contacts"><i class="fa fa-check"></i><b>1.4.1</b> Chromosomal territories and inter-chromosomal contacts</a></li>
<li class="chapter" data-level="1.4.2" data-path="1-4-hierarchy-of-chromatin-3d-structure.html"><a href="1-4-hierarchy-of-chromatin-3d-structure.html#ab-compartments"><i class="fa fa-check"></i><b>1.4.2</b> A/B compartments</a></li>
<li class="chapter" data-level="1.4.3" data-path="1-4-hierarchy-of-chromatin-3d-structure.html"><a href="1-4-hierarchy-of-chromatin-3d-structure.html#topologically-associating-domains-tads"><i class="fa fa-check"></i><b>1.4.3</b> Topologically associating domains (TADs)</a></li>
<li class="chapter" data-level="1.4.4" data-path="1-4-hierarchy-of-chromatin-3d-structure.html"><a href="1-4-hierarchy-of-chromatin-3d-structure.html#hierarchy-of-domain-like-structures-across-genomic-length-scales"><i class="fa fa-check"></i><b>1.4.4</b> Hierarchy of domain-like structures across genomic-length scales</a></li>
<li class="chapter" data-level="1.4.4" data-path="1-4-hierarchy-of-chromatin-3d-structure.html"><a href="1-4-hierarchy-of-chromatin-3d-structure.html#hierarchy-of-domain-structures-across-genomic-length-scales"><i class="fa fa-check"></i><b>1.4.4</b> Hierarchy of domain structures across genomic length scales</a></li>
<li class="chapter" data-level="1.4.5" data-path="1-4-hierarchy-of-chromatin-3d-structure.html"><a href="1-4-hierarchy-of-chromatin-3d-structure.html#chromatin-looping-interactions"><i class="fa fa-check"></i><b>1.4.5</b> Chromatin looping interactions</a></li>
<li class="chapter" data-level="1.4.6" data-path="1-4-hierarchy-of-chromatin-3d-structure.html"><a href="1-4-hierarchy-of-chromatin-3d-structure.html#loop-mechanism"><i class="fa fa-check"></i><b>1.4.6</b> TAD and loop formation by architectural proteins</a></li>
</ul></li>
<li class="chapter" data-level="1.5" data-path="1-5-dynamics-of-chromatin-structure.html"><a href="1-5-dynamics-of-chromatin-structure.html"><i class="fa fa-check"></i><b>1.5</b> Dynamics of chromatin structure</a><ul>
<li class="chapter" data-level="1.5.1" data-path="1-5-dynamics-of-chromatin-structure.html"><a href="1-5-dynamics-of-chromatin-structure.html#dynamics-across-cell-cycle"><i class="fa fa-check"></i><b>1.5.1</b> Dynamics across cell cycle</a></li>
<li class="chapter" data-level="1.5.1" data-path="1-5-dynamics-of-chromatin-structure.html"><a href="1-5-dynamics-of-chromatin-structure.html#dynamics-across-the-cell-cycle"><i class="fa fa-check"></i><b>1.5.1</b> Dynamics across the cell cycle</a></li>
<li class="chapter" data-level="1.5.2" data-path="1-5-dynamics-of-chromatin-structure.html"><a href="1-5-dynamics-of-chromatin-structure.html#dynamics-across-cell-types-and-differntiation"><i class="fa fa-check"></i><b>1.5.2</b> Dynamics across cell types and differntiation</a></li>
</ul></li>
<li class="chapter" data-level="1.6" data-path="1-6-evolution-of-chromatin-organization.html"><a href="1-6-evolution-of-chromatin-organization.html"><i class="fa fa-check"></i><b>1.6</b> Evolution of chromatin organization</a></li>
Expand Down
4 changes: 2 additions & 2 deletions docs/1-2-distal-regulation-by-enhancers.html
Original file line number Diff line number Diff line change
Expand Up @@ -78,12 +78,12 @@
<li class="chapter" data-level="1.4.1" data-path="1-4-hierarchy-of-chromatin-3d-structure.html"><a href="1-4-hierarchy-of-chromatin-3d-structure.html#chromosomal-territories-and-inter-chromosomal-contacts"><i class="fa fa-check"></i><b>1.4.1</b> Chromosomal territories and inter-chromosomal contacts</a></li>
<li class="chapter" data-level="1.4.2" data-path="1-4-hierarchy-of-chromatin-3d-structure.html"><a href="1-4-hierarchy-of-chromatin-3d-structure.html#ab-compartments"><i class="fa fa-check"></i><b>1.4.2</b> A/B compartments</a></li>
<li class="chapter" data-level="1.4.3" data-path="1-4-hierarchy-of-chromatin-3d-structure.html"><a href="1-4-hierarchy-of-chromatin-3d-structure.html#topologically-associating-domains-tads"><i class="fa fa-check"></i><b>1.4.3</b> Topologically associating domains (TADs)</a></li>
<li class="chapter" data-level="1.4.4" data-path="1-4-hierarchy-of-chromatin-3d-structure.html"><a href="1-4-hierarchy-of-chromatin-3d-structure.html#hierarchy-of-domain-like-structures-across-genomic-length-scales"><i class="fa fa-check"></i><b>1.4.4</b> Hierarchy of domain-like structures across genomic-length scales</a></li>
<li class="chapter" data-level="1.4.4" data-path="1-4-hierarchy-of-chromatin-3d-structure.html"><a href="1-4-hierarchy-of-chromatin-3d-structure.html#hierarchy-of-domain-structures-across-genomic-length-scales"><i class="fa fa-check"></i><b>1.4.4</b> Hierarchy of domain structures across genomic length scales</a></li>
<li class="chapter" data-level="1.4.5" data-path="1-4-hierarchy-of-chromatin-3d-structure.html"><a href="1-4-hierarchy-of-chromatin-3d-structure.html#chromatin-looping-interactions"><i class="fa fa-check"></i><b>1.4.5</b> Chromatin looping interactions</a></li>
<li class="chapter" data-level="1.4.6" data-path="1-4-hierarchy-of-chromatin-3d-structure.html"><a href="1-4-hierarchy-of-chromatin-3d-structure.html#loop-mechanism"><i class="fa fa-check"></i><b>1.4.6</b> TAD and loop formation by architectural proteins</a></li>
</ul></li>
<li class="chapter" data-level="1.5" data-path="1-5-dynamics-of-chromatin-structure.html"><a href="1-5-dynamics-of-chromatin-structure.html"><i class="fa fa-check"></i><b>1.5</b> Dynamics of chromatin structure</a><ul>
<li class="chapter" data-level="1.5.1" data-path="1-5-dynamics-of-chromatin-structure.html"><a href="1-5-dynamics-of-chromatin-structure.html#dynamics-across-cell-cycle"><i class="fa fa-check"></i><b>1.5.1</b> Dynamics across cell cycle</a></li>
<li class="chapter" data-level="1.5.1" data-path="1-5-dynamics-of-chromatin-structure.html"><a href="1-5-dynamics-of-chromatin-structure.html#dynamics-across-the-cell-cycle"><i class="fa fa-check"></i><b>1.5.1</b> Dynamics across the cell cycle</a></li>
<li class="chapter" data-level="1.5.2" data-path="1-5-dynamics-of-chromatin-structure.html"><a href="1-5-dynamics-of-chromatin-structure.html#dynamics-across-cell-types-and-differntiation"><i class="fa fa-check"></i><b>1.5.2</b> Dynamics across cell types and differntiation</a></li>
</ul></li>
<li class="chapter" data-level="1.6" data-path="1-6-evolution-of-chromatin-organization.html"><a href="1-6-evolution-of-chromatin-organization.html"><i class="fa fa-check"></i><b>1.6</b> Evolution of chromatin organization</a></li>
Expand Down
4 changes: 2 additions & 2 deletions docs/1-3-methods-to-probe-the-3d-chromatin-architecture.html
Original file line number Diff line number Diff line change
Expand Up @@ -78,12 +78,12 @@
<li class="chapter" data-level="1.4.1" data-path="1-4-hierarchy-of-chromatin-3d-structure.html"><a href="1-4-hierarchy-of-chromatin-3d-structure.html#chromosomal-territories-and-inter-chromosomal-contacts"><i class="fa fa-check"></i><b>1.4.1</b> Chromosomal territories and inter-chromosomal contacts</a></li>
<li class="chapter" data-level="1.4.2" data-path="1-4-hierarchy-of-chromatin-3d-structure.html"><a href="1-4-hierarchy-of-chromatin-3d-structure.html#ab-compartments"><i class="fa fa-check"></i><b>1.4.2</b> A/B compartments</a></li>
<li class="chapter" data-level="1.4.3" data-path="1-4-hierarchy-of-chromatin-3d-structure.html"><a href="1-4-hierarchy-of-chromatin-3d-structure.html#topologically-associating-domains-tads"><i class="fa fa-check"></i><b>1.4.3</b> Topologically associating domains (TADs)</a></li>
<li class="chapter" data-level="1.4.4" data-path="1-4-hierarchy-of-chromatin-3d-structure.html"><a href="1-4-hierarchy-of-chromatin-3d-structure.html#hierarchy-of-domain-like-structures-across-genomic-length-scales"><i class="fa fa-check"></i><b>1.4.4</b> Hierarchy of domain-like structures across genomic-length scales</a></li>
<li class="chapter" data-level="1.4.4" data-path="1-4-hierarchy-of-chromatin-3d-structure.html"><a href="1-4-hierarchy-of-chromatin-3d-structure.html#hierarchy-of-domain-structures-across-genomic-length-scales"><i class="fa fa-check"></i><b>1.4.4</b> Hierarchy of domain structures across genomic length scales</a></li>
<li class="chapter" data-level="1.4.5" data-path="1-4-hierarchy-of-chromatin-3d-structure.html"><a href="1-4-hierarchy-of-chromatin-3d-structure.html#chromatin-looping-interactions"><i class="fa fa-check"></i><b>1.4.5</b> Chromatin looping interactions</a></li>
<li class="chapter" data-level="1.4.6" data-path="1-4-hierarchy-of-chromatin-3d-structure.html"><a href="1-4-hierarchy-of-chromatin-3d-structure.html#loop-mechanism"><i class="fa fa-check"></i><b>1.4.6</b> TAD and loop formation by architectural proteins</a></li>
</ul></li>
<li class="chapter" data-level="1.5" data-path="1-5-dynamics-of-chromatin-structure.html"><a href="1-5-dynamics-of-chromatin-structure.html"><i class="fa fa-check"></i><b>1.5</b> Dynamics of chromatin structure</a><ul>
<li class="chapter" data-level="1.5.1" data-path="1-5-dynamics-of-chromatin-structure.html"><a href="1-5-dynamics-of-chromatin-structure.html#dynamics-across-cell-cycle"><i class="fa fa-check"></i><b>1.5.1</b> Dynamics across cell cycle</a></li>
<li class="chapter" data-level="1.5.1" data-path="1-5-dynamics-of-chromatin-structure.html"><a href="1-5-dynamics-of-chromatin-structure.html#dynamics-across-the-cell-cycle"><i class="fa fa-check"></i><b>1.5.1</b> Dynamics across the cell cycle</a></li>
<li class="chapter" data-level="1.5.2" data-path="1-5-dynamics-of-chromatin-structure.html"><a href="1-5-dynamics-of-chromatin-structure.html#dynamics-across-cell-types-and-differntiation"><i class="fa fa-check"></i><b>1.5.2</b> Dynamics across cell types and differntiation</a></li>
</ul></li>
<li class="chapter" data-level="1.6" data-path="1-6-evolution-of-chromatin-organization.html"><a href="1-6-evolution-of-chromatin-organization.html"><i class="fa fa-check"></i><b>1.6</b> Evolution of chromatin organization</a></li>
Expand Down
Loading

0 comments on commit d84eb28

Please sign in to comment.