Skip to content

Helper functions for workflows used in modelling species distributions

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

idem-lab/sdmtools

Repository files navigation

sdmtools

R-CMD-check Codecov test coverage GitHub License Lifecycle: GitHub commit activity GitHub Downloads (all assets, all releases) GitHub last commit GitHub R package version GitHub commits since latest release Codecov test coverage

A set of helper functions to facilitate species distribution modelling.

Installation

You can install sdmtools with:

install.packages(
"sdmtools",
repos = "https://idem-lab.r-universe.dev"
)

Data

library(sdmtools)

raster_to_terra — an annotated equivalence table of functions from the raster and terra. First 5 lines:

raster terra comment for terra use
raster, brick, stack rast NA
rasterFromXYZ rast(, type=‘xyz’) note arg `type = xyz`
stack, addLayer c NA
addLayer add\<- NA
area cellSize or expanse NA

global_regions — a tibble showing the WHO region, UN region, and continent for for 249 countries and country-like things. First 5 lines:

country iso2 iso3 who_region un_region continent
Afghanistan AF AFG Eastern Mediterranean Asia-Pacific States Asia
Albania AL ALB Europe Eastern European States Europe
Algeria DZ DZA Africa African states Africa
American Samoa AS ASM NA NA Oceania
Andorra AD AND Europe Western European and other States Europe

Data-generating functions

The package terra is fiddly about storing its spat... objects in packages, so we chose to generate example spatial data on-demand using functions, rather than storing it.

example_raster — an example spatRaster.

library(terra)
#> terra 1.8.5
r <- example_raster()
r
#> class       : SpatRaster 
#> dimensions  : 10, 10, 1  (nrow, ncol, nlyr)
#> resolution  : 1, 1  (x, y)
#> extent      : 0, 10, 0, 10  (xmin, xmax, ymin, ymax)
#> coord. ref. :  
#> source(s)   : memory
#> name        :   example 
#> min value   : 0.0627102 
#> max value   : 7.3352526
plot(r)

example_vector — an example spatVector.

library(terra)
v <- example_vector()
v
#>  class       : SpatVector 
#>  geometry    : points 
#>  dimensions  : 10, 0  (geometries, attributes)
#>  extent      : 0.2293562, 8.00672, 1.375653, 8.951683  (xmin, xmax, ymin, ymax)
#>  coord. ref. :
plot(v)

make_africa_mask — makes a mask layer of Africa based on shapefiles from malariaAtlas::getShp. Can produce either a SpatRaster or SpatVector.

library(terra)
africa_mask <- make_africa_mask(type = "vector")
#> Loading ISO 19139 XML schemas...
#> Loading ISO 19115 codelists...
#> Please Note: Because you did not provide a version, by default the version being used is 202403 (This is the most recent version of admin unit shape data. To see other version options use function listShpVersions)
#> Start tag expected, '<' not found
#> Start tag expected, '<' not found
#> although coordinates are longitude/latitude, st_union assumes that they are
#> planar
#> Warning: [crs<-] not all geometries were transferred, use svc for a geometry
#> collection
plot(africa_mask)

Function examples

rastpointplot — simple utility to plot a raster with points over it.

rastpointplot(r,v)

source_R — source all R files in a target directory

source_R("/Users/frankenstein/project/R") # do not run

import_rasts — import all rasters from a directory into a single object

rasters <- import_rasts("/data/grids/covariates") # do not run

split_rast — split a raster.

r <- example_raster()

s <- split_rast(r, grain = 2)

s
#> [[1]]
#> class       : SpatRaster 
#> dimensions  : 5, 5, 1  (nrow, ncol, nlyr)
#> resolution  : 1, 1  (x, y)
#> extent      : 0, 5, 0, 5  (xmin, xmax, ymin, ymax)
#> coord. ref. :  
#> source(s)   : memory
#> name        :   example 
#> min value   : 0.1587361 
#> max value   : 7.3352526 
#> 
#> [[2]]
#> class       : SpatRaster 
#> dimensions  : 5, 5, 1  (nrow, ncol, nlyr)
#> resolution  : 1, 1  (x, y)
#> extent      : 0, 5, 5, 10  (xmin, xmax, ymin, ymax)
#> coord. ref. :  
#> source(s)   : memory
#> name        :   example 
#> min value   : 0.1028045 
#> max value   : 4.0001839 
#> 
#> [[3]]
#> class       : SpatRaster 
#> dimensions  : 5, 5, 1  (nrow, ncol, nlyr)
#> resolution  : 1, 1  (x, y)
#> extent      : 5, 10, 0, 5  (xmin, xmax, ymin, ymax)
#> coord. ref. :  
#> source(s)   : memory
#> name        :    example 
#> min value   : 0.09802478 
#> max value   : 3.23820739 
#> 
#> [[4]]
#> class       : SpatRaster 
#> dimensions  : 5, 5, 1  (nrow, ncol, nlyr)
#> resolution  : 1, 1  (x, y)
#> extent      : 5, 10, 5, 10  (xmin, xmax, ymin, ymax)
#> coord. ref. :  
#> source(s)   : memory
#> name        :   example 
#> min value   : 0.0627102 
#> max value   : 5.7145289
ps <- lapply(
  s,
  FUN = extend,
  y = r
) |>
  rast()

c(
  r,
  ps
) |>
  plot()

Functions for a species distribution modelling workflow

We have some covariate layers: cov1 and cov2

library(terra)

cov1 <- example_raster(
  seed = -44,
  layername = "cov1"
)
cov2 <- example_raster(
  seed = 15.3,
  layername = "cov2"
)

covs <- c(cov1, cov2)

std_rast — standardise a spatRaster by transforming it to have a range of 0—1

cov1_st <- std_rast(cov1)

plot(cov1_st)

We have some presences and absences

presences <- example_vector(seed = 68) %>%
  as.data.frame(geom = "xy")
absences <- example_vector(seed = 9.6) %>%
  as.data.frame(geom = "xy")

presences
#>           x        y
#> 1  9.244899 5.033042
#> 2  6.612025 1.559797
#> 3  4.024099 8.750261
#> 4  6.370063 4.438317
#> 5  3.526324 6.598762
#> 6  7.476441 7.754586
#> 7  7.175489 8.123659
#> 8  1.935898 5.082858
#> 9  3.331217 7.974853
#> 10 1.365547 5.741829

extract_covariates — extract covariate values from spatRaster or raster layers for a given set of points

Pass in either presences and absences as a data.frame or tibble of with , or presences_and_absences as a single data frame points with a presence or ID column(s)

sdm_data <- extract_covariates(
  covariates = covs,
  presences = presences,
  absences = absences
)

We can then make a spatial prediction of our model using predict_sdm and write and read it out in a single step with writereadrast, and write it to a temporary file with temptif:

# first we make a simple model, using data from above
m <- glm(presence ~ cov1 + cov2, data = sdm_data)

prediction_rast <- predict_sdm(m, covs) |>
  writereadrast(filename = temptif())

plot(prediction_rast)

About

Helper functions for workflows used in modelling species distributions

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Contributors 3

  •  
  •  
  •