-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
153 changed files
with
42,054 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,193 @@ | ||
mask_rcnn_inception_v2_coco_2018_01_28/ | ||
mask_rcnn_inception_v2_coco_2018_01_28.zip | ||
|
||
# Created by https://www.gitignore.io/api/vim,macos,linux,python,virtualenv | ||
|
||
### Linux ### | ||
*~ | ||
|
||
# temporary files which can be created if a process still has a handle open of a deleted file | ||
.fuse_hidden* | ||
|
||
# KDE directory preferences | ||
.directory | ||
|
||
# Linux trash folder which might appear on any partition or disk | ||
.Trash-* | ||
|
||
# .nfs files are created when an open file is removed but is still being accessed | ||
.nfs* | ||
|
||
### macOS ### | ||
# General | ||
.DS_Store | ||
.AppleDouble | ||
.LSOverride | ||
|
||
# Icon must end with two \r | ||
Icon | ||
|
||
# Thumbnails | ||
._* | ||
|
||
# Files that might appear in the root of a volume | ||
.DocumentRevisions-V100 | ||
.fseventsd | ||
.Spotlight-V100 | ||
.TemporaryItems | ||
.Trashes | ||
.VolumeIcon.icns | ||
.com.apple.timemachine.donotpresent | ||
|
||
# Directories potentially created on remote AFP share | ||
.AppleDB | ||
.AppleDesktop | ||
Network Trash Folder | ||
Temporary Items | ||
.apdisk | ||
|
||
### Python ### | ||
# Byte-compiled / optimized / DLL files | ||
__pycache__/ | ||
*.py[cod] | ||
*$py.class | ||
|
||
# C extensions | ||
*.so | ||
|
||
# Distribution / packaging | ||
.Python | ||
build/ | ||
develop-eggs/ | ||
dist/ | ||
downloads/ | ||
eggs/ | ||
.eggs/ | ||
lib/ | ||
lib64/ | ||
parts/ | ||
sdist/ | ||
var/ | ||
wheels/ | ||
*.egg-info/ | ||
.installed.cfg | ||
*.egg | ||
MANIFEST | ||
|
||
# PyInstaller | ||
# Usually these files are written by a python script from a template | ||
# before PyInstaller builds the exe, so as to inject date/other infos into it. | ||
*.manifest | ||
*.spec | ||
|
||
# Installer logs | ||
pip-log.txt | ||
pip-delete-this-directory.txt | ||
|
||
# Unit test / coverage reports | ||
htmlcov/ | ||
.tox/ | ||
.coverage | ||
.coverage.* | ||
.cache | ||
nosetests.xml | ||
coverage.xml | ||
*.cover | ||
.hypothesis/ | ||
.pytest_cache/ | ||
|
||
# Translations | ||
*.mo | ||
*.pot | ||
|
||
# Django stuff: | ||
*.log | ||
local_settings.py | ||
db.sqlite3 | ||
|
||
# Flask stuff: | ||
instance/ | ||
.webassets-cache | ||
|
||
# Scrapy stuff: | ||
.scrapy | ||
|
||
# Sphinx documentation | ||
docs/_build/ | ||
|
||
# PyBuilder | ||
target/ | ||
|
||
# Jupyter Notebook | ||
.ipynb_checkpoints | ||
|
||
# pyenv | ||
.python-version | ||
|
||
# celery beat schedule file | ||
celerybeat-schedule | ||
|
||
# SageMath parsed files | ||
*.sage.py | ||
|
||
# Environments | ||
.env | ||
.venv | ||
env/ | ||
venv/ | ||
ENV/ | ||
env.bak/ | ||
venv.bak/ | ||
|
||
# Spyder project settings | ||
.spyderproject | ||
.spyproject | ||
|
||
# Rope project settings | ||
.ropeproject | ||
|
||
# mkdocs documentation | ||
/site | ||
|
||
# mypy | ||
.mypy_cache/ | ||
|
||
### Python Patch ### | ||
.venv/ | ||
|
||
### Python.VirtualEnv Stack ### | ||
# Virtualenv | ||
# http://iamzed.com/2009/05/07/a-primer-on-virtualenv/ | ||
[Bb]in | ||
[Ii]nclude | ||
[Ll]ib | ||
[Ll]ib64 | ||
[Ll]ocal | ||
[Ss]cripts | ||
pyvenv.cfg | ||
pip-selfcheck.json | ||
|
||
### Vim ### | ||
# Swap | ||
[._]*.s[a-v][a-z] | ||
[._]*.sw[a-p] | ||
[._]s[a-rt-v][a-z] | ||
[._]ss[a-gi-z] | ||
[._]sw[a-p] | ||
|
||
# Session | ||
Session.vim | ||
|
||
# Temporary | ||
.netrwhist | ||
# Auto-generated tag files | ||
tags | ||
# Persistent undo | ||
[._]*.un~ | ||
|
||
### VirtualEnv ### | ||
# Virtualenv | ||
# http://iamzed.com/2009/05/07/a-primer-on-virtualenv/ | ||
|
||
|
||
# End of https://www.gitignore.io/api/vim,macos,linux,python,virtualenv |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
# MaskRCNN Inception trained on COCO | ||
|
||
 | ||
|
||
## [Link to model](https://github.com/iitzco/deepzoo/releases/download/model-upload-2/mask_rcnn_inception_v2_coco_2018_01_28.zip) | ||
|
||
## Requirements | ||
|
||
* tensorflow | ||
* numpy | ||
* matplotlib | ||
|
||
Install them by running `pip install -r requirements.txt` | ||
|
||
## How to run | ||
|
||
Use `MaskRCNNModel` class from `maskrcnn.py`. | ||
|
||
The class can be used as shown in the following example: | ||
|
||
```python | ||
img_path = "/path/to/my/image" | ||
|
||
# Provide the .pb model file path | ||
graph_path = "/path/to/downloaded/pbmodel" | ||
|
||
# Provide the .pbtxt label map file path | ||
label_map = "/path/to/downloaded/pbmap" | ||
|
||
model = MaskRCNNModel(graph_path, label_map) | ||
|
||
out = model.run(img) | ||
img = Image.fromarray(out) | ||
img.show() | ||
``` | ||
|
||
> *NOTE*: the `run` method receives a numpy array with shape [H, W, C]. If you use the Image library to open the image, remember to also install `pillow`. | ||
An image with the intance segmentation should show up. | ||
|
||
## Customize | ||
|
||
See `json_handler` to see how to handle the model's output. | ||
|
||
## Model info | ||
|
||
Provided by tensorflow in it's model zoo. Link [here](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md) |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,123 @@ | ||
import numpy as np | ||
import tensorflow as tf | ||
import json | ||
from json import encoder | ||
encoder.FLOAT_REPR = lambda o: format(o, '.2f') | ||
|
||
from object_detection.utils import label_map_util | ||
from object_detection.utils import ops as utils_ops | ||
from object_detection.utils import visualization_utils as vis_util | ||
|
||
|
||
class MaskRCNNModel(object): | ||
|
||
def __init__(self, graph_path, labels_path, num_classes=90): | ||
self.load(graph_path, labels_path, num_classes) | ||
|
||
def load(self, graph_path, labels_path, num_classes): | ||
detection_graph = tf.Graph() | ||
with detection_graph.as_default(): | ||
od_graph_def = tf.GraphDef() | ||
with tf.gfile.GFile(graph_path, 'rb') as fid: | ||
serialized_graph = fid.read() | ||
od_graph_def.ParseFromString(serialized_graph) | ||
tf.import_graph_def(od_graph_def, name='') | ||
|
||
|
||
label_map = label_map_util.load_labelmap(labels_path) | ||
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=num_classes, use_display_name=True) | ||
|
||
self.category_index = label_map_util.create_category_index(categories) | ||
self.graph = detection_graph | ||
self.sess = tf.Session(graph=self.graph) | ||
|
||
def load_nodes(self, image): | ||
ops = self.graph.get_operations() | ||
|
||
all_tensor_names = {output.name for op in ops for output in op.outputs} | ||
self.tensor_dict = {} | ||
for key in [ | ||
'num_detections', 'detection_boxes', 'detection_scores', | ||
'detection_classes', 'detection_masks' | ||
]: | ||
tensor_name = key + ':0' | ||
if tensor_name in all_tensor_names: | ||
self.tensor_dict[key] = self.graph.get_tensor_by_name(tensor_name) | ||
|
||
if 'detection_masks' in self.tensor_dict: | ||
# The following processing is only for single image | ||
detection_boxes = tf.squeeze(self.tensor_dict['detection_boxes'], [0]) | ||
detection_masks = tf.squeeze(self.tensor_dict['detection_masks'], [0]) | ||
# Reframe is required to translate mask from box coordinates to image coordinates and fit the image size. | ||
real_num_detection = tf.cast(self.tensor_dict['num_detections'][0], tf.int32) | ||
detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1]) | ||
detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1]) | ||
detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks( | ||
detection_masks, detection_boxes, image.shape[0], image.shape[1]) | ||
detection_masks_reframed = tf.cast( | ||
tf.greater(detection_masks_reframed, 0.5), tf.uint8) | ||
# Follow the convention by adding back the batch dimension | ||
self.tensor_dict['detection_masks'] = tf.expand_dims( | ||
detection_masks_reframed, 0) | ||
|
||
self.image_tensor = self.graph.get_tensor_by_name('image_tensor:0') | ||
|
||
def _run_inference(self, image): | ||
self.load_nodes(image) | ||
# Run inference | ||
output_dict = self.sess.run(self.tensor_dict, feed_dict={self.image_tensor: np.expand_dims(image, 0)}) | ||
|
||
# all outputs are float32 numpy arrays, so convert types as appropriate | ||
output_dict['num_detections'] = int(output_dict['num_detections'][0]) | ||
output_dict['detection_classes'] = output_dict[ | ||
'detection_classes'][0].astype(np.uint8) | ||
output_dict['detection_boxes'] = output_dict['detection_boxes'][0] | ||
output_dict['detection_scores'] = output_dict['detection_scores'][0] | ||
|
||
if 'detection_masks' in output_dict: | ||
output_dict['detection_masks'] = output_dict['detection_masks'][0] | ||
|
||
return output_dict | ||
|
||
def json_handler(self, image, output_dict): | ||
boxes = output_dict['detection_boxes'] | ||
classes = output_dict['detection_classes'] | ||
scores = output_dict['detection_scores'] | ||
|
||
d = {} | ||
l = [] | ||
for i, v in enumerate(scores): | ||
if v > 0: | ||
aux = {} | ||
aux['y0'] = float("{0:.4f}".format(boxes[i][0])) | ||
aux['x0'] = float("{0:.4f}".format(boxes[i][1])) | ||
aux['y1'] = float("{0:.4f}".format(boxes[i][2])) | ||
aux['x1'] = float("{0:.4f}".format(boxes[i][3])) | ||
aux['object'] = self.category_index[classes[i]]['name'] | ||
aux['probability'] = float("{0:.4f}".format(scores[i])) | ||
aux['mask'] = output_dict['detection_masks'].tolist() | ||
l.append(aux) | ||
|
||
d['data'] = l | ||
return json.dumps(d) | ||
|
||
|
||
def image_handler(self, image, output_dict): | ||
vis_util.visualize_boxes_and_labels_on_image_array( | ||
image, | ||
output_dict['detection_boxes'], | ||
output_dict['detection_classes'], | ||
output_dict['detection_scores'], | ||
self.category_index, | ||
instance_masks=output_dict['detection_masks'], | ||
use_normalized_coordinates=True, | ||
line_thickness=4, | ||
min_score_thresh=.3) | ||
|
||
return image | ||
|
||
|
||
def run(self, image, handler=None): | ||
if handler is None: | ||
handler = self.image_handler | ||
return handler(image, self._run_inference(image)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
|
Oops, something went wrong.