The foundational core for backrooms and swarms, bringing together the smartest KOLs to revolutionize capital allocation, DAOs, funds, and collaborative ecosystems. Stay tuned as we release some good updates coming days. Thanks
- Basic agent profile creation and management
- Document upload and processing system
- Agent knowledge base integration
- Inter-agent conversation system
- Bucket creation and management
- Document generation and summarization
- Core business logic implementation
- Basic API structure
- FastAPI backend completion
- Agent performance metrics
- Enhanced error handling and logging
- User authentication system
- Python 3.8 or higher
- pip package manager
- Virtual environment support
-
Clone the repository:
git clone https://github.com/infiniteregenAI/infiniteFE.git cd infiniteFE
-
Create a virtual environment:
python -m venv venv source venv/bin/activate # Linux/Mac # or .\venv\Scripts\activate # Windows
-
Install dependencies:
pip install -r requirements.txt
-
Set up environment variables:
- Create a
.env
file in the project root directory:OPENAI_API_KEY=your_openai_api_key_here DB_URL=postgres_db_url
- Create a
Run the following command to start the FastAPI backend:
uvicorn api.main:app --reload
Access the API documentation at http://localhost:8000/docs.
Run the following command to start the Corev2 FastAPI application:
cd corev2
uvicorn main:app --reload
Access the API documentation at http://localhost:8000/docs.
SwarmSphere/
├── core/ # Core business logic
│ ├── __init__.py
│ ├── models.py # Data models
│ ├── agent_manager.py # Agent management logic
│ └── conversation_manager.py
│
├── corev2/ # Advanced core components
│ ├── agent.json # Agent configuration template
│ ├── team.json # Team configuration template
│ ├── agent_manager.py # Advanced agent management
│ ├── main.py # Core application logic
│ └── models.py # Advanced data models
│
├── api/ # FastAPI implementation
│ ├── __init__.py
│ ├── main.py # API routes and configuration
│ ├── models.py # API data models
│ └── routers/ # API route definitions
│
└── requirements.txt # Project dependencies
- Access the Agent Management page via the UI.
- Define the agent's personality and expertise.
- Upload knowledge documents to the agent's knowledge base.
- Navigate to the Bucket Management page.
- Set the bucket's goal or purpose.
- Select participating agents and configure conversation parameters.
- Launch the bucket to initiate agent interactions.
- Monitor agent conversations and progress in real-time.
- Generate and download collaborative documentation.
- Agent Market: Allow users to trade pre-configured agents.
- Real-Time Collaboration: Enhance live interaction monitoring.
- Integrations: Add support for external services like Slack and Google Docs.
- Advanced Analytics: Provide detailed insights into agent and bucket performance.
We welcome contributions to SwarmSphere! To contribute:
- Fork the repository.
- Create a feature branch (
git checkout -b feature-name
). - Commit your changes (
git commit -m "Add new feature"
). - Push to your branch (
git push origin feature-name
). - Open a pull request.
For questions or feedback, please reach out to hoomandigital18@gmail.com.