Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Ugly fix for categorical data #1014

Merged
merged 5 commits into from
Aug 4, 2023
Merged

Conversation

Melkiades
Copy link
Contributor

FIxes #1013 but it may be not the best way. Last test show an alternative way that is much simpler.

@Melkiades Melkiades added bug Something isn't working sme labels Jul 27, 2023
@github-actions
Copy link
Contributor

github-actions bot commented Jul 27, 2023

badge

Code Coverage Summary

Filename                                   Stmts    Miss  Cover    Missing
---------------------------------------  -------  ------  -------  -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
R/abnormal_by_baseline.R                      63       0  100.00%
R/abnormal_by_marked.R                        53       5  90.57%   115-119
R/abnormal_by_worst_grade_worsen.R           114       3  97.37%   233-235
R/abnormal_by_worst_grade.R                   38       0  100.00%
R/abnormal.R                                  41       0  100.00%
R/analyze_variables.R                        220       2  99.09%   273, 499
R/analyze_vars_in_cols.R                     120      22  81.67%   164, 188-193, 206, 219-225, 276-282
R/combination_function.R                       9       0  100.00%
R/compare_variables.R                        139       5  96.40%   126-127, 137, 241, 259
R/control_incidence_rate.R                    20       8  60.00%   32-35, 38-41
R/control_logistic.R                           7       0  100.00%
R/control_step.R                              23       1  95.65%   58
R/control_survival.R                          15       0  100.00%
R/count_cumulative.R                          48       1  97.92%   63
R/count_missed_doses.R                        32       0  100.00%
R/count_occurrences_by_grade.R                85       6  92.94%   156-158, 161, 176-177
R/count_occurrences.R                         62       1  98.39%   92
R/count_patients_events_in_cols.R             67       1  98.51%   62
R/count_patients_with_event.R                 34       0  100.00%
R/count_patients_with_flags.R                 45       4  91.11%   71-72, 77-78
R/count_values.R                              25       0  100.00%
R/cox_regression_inter.R                     154       0  100.00%
R/cox_regression.R                           161       0  100.00%
R/coxph.R                                    167       7  95.81%   191-195, 239, 254, 262, 268-269
R/d_pkparam.R                                406       0  100.00%
R/decorate_grob.R                            169      40  76.33%   232-263, 323-325, 332, 353-390
R/desctools_binom_diff.R                     663      66  90.05%   55, 90-91, 131-132, 135, 214, 240-249, 288, 290, 310, 314, 318, 322, 378, 381, 384, 387, 448, 456, 468-469, 475-478, 486, 489, 498, 501, 549-550, 552-553, 555-556, 558-559, 629, 641-654, 659, 706, 719, 723
R/df_explicit_na.R                            30       0  100.00%
R/estimate_multinomial_rsp.R                  48       1  97.92%   60
R/estimate_proportion.R                      200      12  94.00%   75-82, 86, 91, 296, 463, 568
R/fit_rsp_step.R                              36       0  100.00%
R/fit_survival_step.R                         36       0  100.00%
R/formatting_functions.R                     115       2  98.26%   145, 155
R/g_forest.R                                 437      23  94.74%   197, 248-249, 316, 333-334, 339-340, 353, 369, 416, 447, 523, 532, 613-617, 627, 702, 705, 829
R/g_lineplot.R                               199      29  85.43%   160, 173, 201, 227-230, 307-314, 332-333, 339-349, 441, 449
R/g_step.R                                    68       1  98.53%   109
R/g_waterfall.R                               47       0  100.00%
R/h_adsl_adlb_merge_using_worst_flag.R        74       0  100.00%
R/h_biomarkers_subgroups.R                    40       0  100.00%
R/h_cox_regression.R                         110       0  100.00%
R/h_logistic_regression.R                    468       3  99.36%   206-207, 276
R/h_map_for_count_abnormal.R                  54       0  100.00%
R/h_pkparam_sort.R                            15       0  100.00%
R/h_response_biomarkers_subgroups.R           75       0  100.00%
R/h_response_subgroups.R                     171      12  92.98%   257-270
R/h_stack_by_baskets.R                        65       1  98.46%   91
R/h_step.R                                   180       0  100.00%
R/h_survival_biomarkers_subgroups.R           79       0  100.00%
R/h_survival_duration_subgroups.R            200      12  94.00%   259-271
R/incidence_rate.R                            94       7  92.55%   55-62
R/individual_patient_plot.R                  133       0  100.00%
R/kaplan_meier_plot.R                        644      64  90.06%   226-229, 269-304, 313-317, 517, 702-704, 712-714, 746-747, 919, 1108, 1425-1436
R/logistic_regression.R                      101       0  100.00%
R/missing_data.R                              21       3  85.71%   32, 66, 76
R/odds_ratio.R                               107       0  100.00%
R/prop_diff_test.R                            89       0  100.00%
R/prop_diff.R                                261      16  93.87%   72-75, 107, 269-276, 415, 475, 580
R/prune_occurrences.R                         57      10  82.46%   138-142, 188-192
R/response_biomarkers_subgroups.R             60       0  100.00%
R/response_subgroups.R                       165       4  97.58%   273, 315-317
R/rtables_access.R                            38       4  89.47%   159-162
R/score_occurrences.R                         20       1  95.00%   124
R/split_cols_by_groups.R                      49       0  100.00%
R/stat.R                                      47       3  93.62%   73-74, 129
R/summarize_ancova.R                          96       1  98.96%   180
R/summarize_change.R                          28       0  100.00%
R/summarize_colvars.R                          6       0  100.00%
R/summarize_coxreg.R                         165       2  98.79%   198, 420
R/summarize_glm_count.R                      165       4  97.58%   159, 164, 208, 261
R/summarize_num_patients.R                    75       9  88.00%   103-105, 150-151, 218-223
R/summarize_patients_exposure_in_cols.R       97       1  98.97%   56
R/survival_biomarkers_subgroups.R             60       0  100.00%
R/survival_coxph_pairwise.R                   74       9  87.84%   59-67
R/survival_duration_subgroups.R              172       0  100.00%
R/survival_time.R                             48       0  100.00%
R/survival_timepoint.R                       118       7  94.07%   126-132
R/utils_checkmate.R                           68       0  100.00%
R/utils_factor.R                              87       1  98.85%   84
R/utils_grid.R                               111       5  95.50%   149, 258-264
R/utils_rtables.R                             86       7  91.86%   24, 31-35, 346-347
R/utils.R                                    137      10  92.70%   92, 94, 98, 118, 121, 124, 128, 137-138, 311
TOTAL                                       9206     436  95.26%

Diff against main

Filename                    Stmts    Miss  Cover
------------------------  -------  ------  -------
R/analyze_vars_in_cols.R       +7      -1  +2.02%
TOTAL                          +7      -1  +0.01%

Results for commit: be582da

Minimum allowed coverage is 80%

♻️ This comment has been updated with latest results

@github-actions
Copy link
Contributor

github-actions bot commented Jul 27, 2023

Unit Tests Summary

       1 files    78 suites   1m 8s ⏱️
   743 tests 742 ✔️     1 💤 0
1 575 runs  988 ✔️ 587 💤 0

Results for commit 39112d2.

♻️ This comment has been updated with latest results.

@Melkiades Melkiades requested a review from edelarua August 3, 2023 13:13
Copy link
Contributor

@edelarua edelarua left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Hi Davide,

I agree that the alternative solution is much nicer (although the %s don't match the analyze_vars_in_cols version), but your fix looks ok for now. We should probably revisit analyze_vars_in_cols in the future and see if we can make it more intuitive/simplified (maybe once the additional .spl_context info is added). Thanks for working on this! :)

@edelarua
Copy link
Contributor

edelarua commented Aug 3, 2023

@Melkiades please also update NEWS before merging!

@Melkiades Melkiades enabled auto-merge (squash) August 4, 2023 10:03
@Melkiades Melkiades merged commit e8f3d06 into main Aug 4, 2023
@Melkiades Melkiades deleted the 1013_fix_categorical_incols@main branch August 4, 2023 10:14
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working sme
Projects
None yet
Development

Successfully merging this pull request may close these issues.

analyze_vars_in_cols is not working well with categorical data
2 participants