Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Change to poisson dist to see if it is the glm fit to be unstable #1059

Merged
merged 2 commits into from
Sep 12, 2023

Conversation

Melkiades
Copy link
Contributor

This is not a fix. We need tomorrow's integration tests to see if also the fit changes in the integration tests

@github-actions
Copy link
Contributor

badge

Code Coverage Summary

Filename                                   Stmts    Miss  Cover    Missing
---------------------------------------  -------  ------  -------  -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
R/abnormal_by_baseline.R                      63       0  100.00%
R/abnormal_by_marked.R                        53       5  90.57%   115-119
R/abnormal_by_worst_grade_worsen.R           114       3  97.37%   233-235
R/abnormal_by_worst_grade.R                   38       0  100.00%
R/abnormal.R                                  41       0  100.00%
R/analyze_variables.R                        192       5  97.40%   483, 686-687, 704-705
R/analyze_vars_in_cols.R                     166      29  82.53%   199-204, 219, 233-234, 242-247, 253-259, 334-340
R/combination_function.R                       9       0  100.00%
R/compare_variables.R                        120      15  87.50%   127-131, 243, 321-330, 385
R/control_incidence_rate.R                    20       8  60.00%   32-35, 38-41
R/control_logistic.R                           7       0  100.00%
R/control_step.R                              23       1  95.65%   58
R/control_survival.R                          15       0  100.00%
R/count_cumulative.R                          48       1  97.92%   63
R/count_missed_doses.R                        32       0  100.00%
R/count_occurrences_by_grade.R               103       4  96.12%   156-158, 161
R/count_occurrences.R                         73       1  98.63%   92
R/count_patients_events_in_cols.R             67       1  98.51%   62
R/count_patients_with_event.R                 45       0  100.00%
R/count_patients_with_flags.R                 56       4  92.86%   71-72, 77-78
R/count_values.R                              25       0  100.00%
R/cox_regression_inter.R                     154       0  100.00%
R/cox_regression.R                           161       0  100.00%
R/coxph.R                                    167       7  95.81%   191-195, 239, 254, 262, 268-269
R/d_pkparam.R                                406       0  100.00%
R/decorate_grob.R                            169      40  76.33%   232-263, 323-325, 332, 353-390
R/desctools_binom_diff.R                     663      66  90.05%   52, 87-88, 128-129, 132, 211, 237-246, 285, 287, 307, 311, 315, 319, 375, 378, 381, 384, 445, 453, 465-466, 472-475, 483, 486, 495, 498, 546-547, 549-550, 552-553, 555-556, 626, 638-651, 656, 703, 716, 720
R/df_explicit_na.R                            30       0  100.00%
R/estimate_multinomial_rsp.R                  48       1  97.92%   60
R/estimate_proportion.R                      200      12  94.00%   75-82, 86, 91, 296, 463, 568
R/fit_rsp_step.R                              36       0  100.00%
R/fit_survival_step.R                         36       0  100.00%
R/formatting_functions.R                     158       3  98.10%   145, 155, 234
R/g_forest.R                                 438      23  94.75%   199, 251-252, 319, 336-337, 342-343, 356, 372, 419, 450, 526, 535, 616-620, 630, 705, 708, 832
R/g_lineplot.R                               199      30  84.92%   160, 173, 201, 227-230, 307-314, 332-333, 339-349, 441, 447, 449
R/g_step.R                                    68       1  98.53%   109
R/g_waterfall.R                               47       0  100.00%
R/h_adsl_adlb_merge_using_worst_flag.R        73       0  100.00%
R/h_biomarkers_subgroups.R                    40       0  100.00%
R/h_cox_regression.R                         110       0  100.00%
R/h_logistic_regression.R                    468       3  99.36%   206-207, 276
R/h_map_for_count_abnormal.R                  54       0  100.00%
R/h_pkparam_sort.R                            15       0  100.00%
R/h_response_biomarkers_subgroups.R           75       0  100.00%
R/h_response_subgroups.R                     171      12  92.98%   257-270
R/h_stack_by_baskets.R                        64       1  98.44%   89
R/h_step.R                                   180       0  100.00%
R/h_survival_biomarkers_subgroups.R           79       0  100.00%
R/h_survival_duration_subgroups.R            200      12  94.00%   259-271
R/imputation_rule.R                           17       2  88.24%   54-55
R/incidence_rate.R                            94       7  92.55%   53-60
R/individual_patient_plot.R                  133       0  100.00%
R/kaplan_meier_plot.R                        646      64  90.09%   226-229, 269-304, 313-317, 517, 704-706, 714-716, 748-749, 921, 1110, 1427-1438
R/logistic_regression.R                      101       0  100.00%
R/missing_data.R                              21       3  85.71%   32, 66, 76
R/odds_ratio.R                               107       0  100.00%
R/prop_diff_test.R                            89       0  100.00%
R/prop_diff.R                                261      16  93.87%   72-75, 107, 269-276, 415, 475, 580
R/prune_occurrences.R                         57      10  82.46%   138-142, 188-192
R/response_biomarkers_subgroups.R             60       0  100.00%
R/response_subgroups.R                       165       4  97.58%   268, 312-314
R/riskdiff.R                                  48       7  85.42%   85-88, 95, 105-106
R/rtables_access.R                            38       4  89.47%   159-162
R/score_occurrences.R                         20       1  95.00%   124
R/split_cols_by_groups.R                      49       0  100.00%
R/stat.R                                      59       3  94.92%   73-74, 129
R/summarize_ancova.R                          96       1  98.96%   180
R/summarize_change.R                          28       0  100.00%
R/summarize_colvars.R                          9       0  100.00%
R/summarize_coxreg.R                         165       2  98.79%   198, 420
R/summarize_glm_count.R                      165       5  96.97%   158, 162-163, 207, 260
R/summarize_num_patients.R                    97       9  90.72%   103-105, 153-154, 235-240
R/summarize_patients_exposure_in_cols.R       97       1  98.97%   56
R/survival_biomarkers_subgroups.R             60       0  100.00%
R/survival_coxph_pairwise.R                   74       9  87.84%   59-67
R/survival_duration_subgroups.R              172       0  100.00%
R/survival_time.R                             48       0  100.00%
R/survival_timepoint.R                       118       7  94.07%   126-132
R/utils_checkmate.R                           68       0  100.00%
R/utils_default_stats_formats_labels.R        95       3  96.84%   408-411
R/utils_factor.R                             109       2  98.17%   84, 302
R/utils_grid.R                               111       5  95.50%   149, 258-264
R/utils_rtables.R                             90       7  92.22%   24, 31-35, 376-377
R/utils.R                                    137      10  92.70%   92, 94, 98, 118, 121, 124, 128, 137-138, 311
TOTAL                                       9523     470  95.06%

Diff against main

Filename                   Stmts    Miss  Cover
-----------------------  -------  ------  -------
R/summarize_glm_count.R        0      +1  -0.61%
TOTAL                          0      +1  -0.01%

Results for commit: c5b321c

Minimum allowed coverage is 80%

♻️ This comment has been updated with latest results

@github-actions
Copy link
Contributor

Unit Tests Summary

       1 files       80 suites   1m 13s ⏱️
   774 tests    766 ✔️     8 💤 0
1 642 runs  1 029 ✔️ 613 💤 0

Results for commit 6789c48.

@Melkiades Melkiades enabled auto-merge (squash) September 12, 2023 14:19
@Melkiades Melkiades requested a review from anajens September 12, 2023 14:31
@Melkiades Melkiades merged commit 3127ae3 into main Sep 12, 2023
@Melkiades Melkiades deleted the 1058_fix_snapshots_glm@main branch September 12, 2023 14:35
@shajoezhu shajoezhu linked an issue Sep 22, 2023 that may be closed by this pull request
.var = "AVAL",
.df_row = anl,
variables = list(arm = "ARMCD", offset = "lgTMATRSK", covariates = c("REGION1")),
distribution = "quasipoisson"
)

testthat::expect_snapshot(fits2)
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This does not fail

@@ -87,7 +153,7 @@
[1] "Adjusted Rate"

$rate_ci
[1] 1.983340 6.127155
[1] 3.047667 3.987387
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

These changed!! it is a simple seed problem imo

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

Investigate variable printout forsummarize_glm_count
2 participants