Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add helper function to pre-process ADLB for count_abnormal_by_worst_grade #1132

Merged
merged 3 commits into from
Nov 13, 2023

Conversation

edelarua
Copy link
Contributor

Pull Request

Fixes #1102

@edelarua edelarua added the sme label Nov 11, 2023
Copy link
Contributor

github-actions bot commented Nov 11, 2023

Unit Tests Summary

       1 files       81 suites   1m 55s ⏱️
   800 tests    777 ✔️   23 💤 0
1 696 runs  1 052 ✔️ 644 💤 0

Results for commit e3548eb.

♻️ This comment has been updated with latest results.

Copy link
Contributor

github-actions bot commented Nov 11, 2023

badge

Code Coverage Summary

Filename                                   Stmts    Miss  Cover    Missing
---------------------------------------  -------  ------  -------  ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
R/abnormal_by_baseline.R                      67       2  97.01%   78-79
R/abnormal_by_marked.R                        54       5  90.74%   117-121
R/abnormal_by_worst_grade_worsen.R           115       3  97.39%   235-237
R/abnormal_by_worst_grade.R                   59       0  100.00%
R/abnormal.R                                  42       0  100.00%
R/analyze_variables.R                        190      10  94.74%   489-490, 506, 530, 686-687, 692-693, 711-712
R/analyze_vars_in_cols.R                     178      35  80.34%   168-169, 184, 207-212, 227, 241-242, 250-258, 264-270, 349-355
R/combination_function.R                       9       0  100.00%
R/compare_variables.R                        124      17  86.29%   130-134, 246, 324-333, 387-388, 394
R/control_incidence_rate.R                    20       8  60.00%   32-35, 38-41
R/control_logistic.R                           7       0  100.00%
R/control_step.R                              23       1  95.65%   58
R/control_survival.R                          15       0  100.00%
R/count_cumulative.R                          49       1  97.96%   65
R/count_missed_doses.R                        33       0  100.00%
R/count_occurrences_by_grade.R               105       4  96.19%   158-160, 163
R/count_occurrences.R                        113       1  99.12%   94
R/count_patients_events_in_cols.R             68       1  98.53%   65
R/count_patients_with_event.R                 46       0  100.00%
R/count_patients_with_flags.R                 57       4  92.98%   73-74, 79-80
R/count_values.R                              26       0  100.00%
R/cox_regression_inter.R                     154       0  100.00%
R/cox_regression.R                           161       0  100.00%
R/coxph.R                                    167       7  95.81%   191-195, 239, 254, 262, 268-269
R/d_pkparam.R                                406       0  100.00%
R/decorate_grob.R                            173      40  76.88%   235-266, 326-328, 339, 360-397
R/desctools_binom_diff.R                     621      64  89.69%   53, 88-89, 125-126, 129, 199, 223-232, 264, 266, 286, 290, 294, 298, 353, 356, 359, 362, 422, 430, 439, 444-447, 454, 457, 466, 469, 516-517, 519-520, 522-523, 525-526, 593, 604-616, 620, 663, 676, 680
R/df_explicit_na.R                            30       0  100.00%
R/estimate_multinomial_rsp.R                  49       1  97.96%   62
R/estimate_proportion.R                      201      12  94.03%   77-84, 88, 93, 300, 467, 572
R/fit_rsp_step.R                              36       0  100.00%
R/fit_survival_step.R                         36       0  100.00%
R/formatting_functions.R                     181       3  98.34%   145, 155, 280
R/g_forest.R                                 438      21  95.21%   199, 319, 336-337, 342-343, 356, 372, 419, 450, 526, 535, 616-620, 630, 705, 708, 832
R/g_lineplot.R                               206      34  83.50%   168, 181, 210, 236-239, 315-322, 340-341, 347-357, 449, 455, 457, 499-500, 504-505
R/g_step.R                                    68       1  98.53%   109
R/g_waterfall.R                               47       0  100.00%
R/h_adsl_adlb_merge_using_worst_flag.R        73       0  100.00%
R/h_biomarkers_subgroups.R                    42       0  100.00%
R/h_cox_regression.R                         110       0  100.00%
R/h_logistic_regression.R                    468       3  99.36%   206-207, 276
R/h_map_for_count_abnormal.R                  57       2  96.49%   77-78
R/h_pkparam_sort.R                            15       0  100.00%
R/h_response_biomarkers_subgroups.R           75       0  100.00%
R/h_response_subgroups.R                     171      12  92.98%   257-270
R/h_stack_by_baskets.R                        67       3  95.52%   68-69, 95
R/h_step.R                                   180       0  100.00%
R/h_survival_biomarkers_subgroups.R           79       0  100.00%
R/h_survival_duration_subgroups.R            200      12  94.00%   259-271
R/imputation_rule.R                           17       2  88.24%   54-55
R/incidence_rate.R                            95       7  92.63%   55-62
R/individual_patient_plot.R                  133       0  100.00%
R/kaplan_meier_plot.R                        688      65  90.55%   236-239, 279-314, 323-327, 538, 725-727, 735-737, 769-770, 943-946, 1169, 1495-1506
R/logistic_regression.R                      102       0  100.00%
R/missing_data.R                              21       3  85.71%   32, 66, 76
R/odds_ratio.R                               108       0  100.00%
R/prop_diff_test.R                            90       0  100.00%
R/prop_diff.R                                262      16  93.89%   74-77, 109, 273-280, 419, 479, 584
R/prune_occurrences.R                         57      10  82.46%   138-142, 188-192
R/response_biomarkers_subgroups.R             60       0  100.00%
R/response_subgroups.R                       165       4  97.58%   268, 312-314
R/riskdiff.R                                  52       7  86.54%   88-91, 100, 110-111
R/rtables_access.R                            38       4  89.47%   159-162
R/score_occurrences.R                         20       1  95.00%   124
R/split_cols_by_groups.R                      49       0  100.00%
R/stat.R                                      59       3  94.92%   73-74, 129
R/summarize_ancova.R                          97       1  98.97%   182
R/summarize_change.R                          29       0  100.00%
R/summarize_colvars.R                         12       2  83.33%   72-73
R/summarize_coxreg.R                         174       6  96.55%   198-199, 206, 342-343, 436
R/summarize_glm_count.R                      166      29  82.53%   160, 164-215, 263-264
R/summarize_num_patients.R                   101       9  91.09%   107-109, 158-159, 242-247
R/summarize_patients_exposure_in_cols.R       98       1  98.98%   58
R/survival_biomarkers_subgroups.R             60       0  100.00%
R/survival_coxph_pairwise.R                   75       9  88.00%   61-69
R/survival_duration_subgroups.R              174       0  100.00%
R/survival_time.R                             79       0  100.00%
R/survival_timepoint.R                       120       7  94.17%   128-134
R/utils_checkmate.R                           68       0  100.00%
R/utils_default_stats_formats_labels.R       136       4  97.06%   72, 577-580
R/utils_factor.R                             109       2  98.17%   84, 302
R/utils_grid.R                               111       5  95.50%   149, 258-264
R/utils_rtables.R                             90       7  92.22%   24, 31-35, 376-377
R/utils_split_funs.R                          52       2  96.15%   81, 93
R/utils.R                                    137      10  92.70%   92, 94, 98, 118, 121, 124, 128, 137-138, 311
TOTAL                                       9815     523  94.67%

Diff against main

Filename                       Stmts    Miss  Cover
---------------------------  -------  ------  --------
R/abnormal_by_worst_grade.R      +20       0  +100.00%
TOTAL                            +20       0  +0.01%

Results for commit: e3548eb

Minimum allowed coverage is 80%

♻️ This comment has been updated with latest results

Copy link
Contributor

@Melkiades Melkiades left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Lgtm!!! Nice, now it is much slimmer, also in the examples :) Thanks Emily!

@edelarua edelarua merged commit 5834b60 into main Nov 13, 2023
24 checks passed
@edelarua edelarua deleted the 1102_h_abnormal_by_grade@main branch November 13, 2023 15:20
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

Successfully merging this pull request may close these issues.

Add function to pre-process data for count_abnormal_by_worst_grade
2 participants