Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix documentation for the label_all argument of extract_* functions #1232

Merged
merged 4 commits into from
Apr 23, 2024

Conversation

edelarua
Copy link
Contributor

Pull Request

Fixes #1231

@edelarua edelarua added the sme label Apr 19, 2024
Copy link
Contributor

github-actions bot commented Apr 19, 2024

badge

Code Coverage Summary

Filename                                   Stmts    Miss  Cover    Missing
---------------------------------------  -------  ------  -------  ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
R/abnormal_by_baseline.R                      65       0  100.00%
R/abnormal_by_marked.R                        55       5  90.91%   78-82
R/abnormal_by_worst_grade_worsen.R           116       3  97.41%   242-244
R/abnormal_by_worst_grade.R                   60       0  100.00%
R/abnormal.R                                  43       0  100.00%
R/analyze_variables.R                        162       3  98.15%   488, 512, 628
R/analyze_vars_in_cols.R                     176      33  81.25%   179, 202-207, 222, 236-237, 245-253, 259-265, 344-350
R/bland_altman.R                              92       1  98.91%   43
R/combination_function.R                       9       0  100.00%
R/compare_variables.R                         84       5  94.05%   130-134, 246, 305
R/control_incidence_rate.R                    10       0  100.00%
R/control_logistic.R                           7       0  100.00%
R/control_step.R                              23       1  95.65%   58
R/control_survival.R                          15       0  100.00%
R/count_cumulative.R                          50       1  98.00%   67
R/count_missed_doses.R                        34       0  100.00%
R/count_occurrences_by_grade.R               113       5  95.58%   101, 151-153, 156
R/count_occurrences.R                        115       1  99.13%   108
R/count_patients_events_in_cols.R             67       1  98.51%   53
R/count_patients_with_event.R                 47       0  100.00%
R/count_patients_with_flags.R                 58       4  93.10%   56-57, 62-63
R/count_values.R                              27       0  100.00%
R/cox_regression_inter.R                     154       0  100.00%
R/cox_regression.R                           161       0  100.00%
R/coxph.R                                    167       7  95.81%   191-195, 238, 253, 261, 267-268
R/d_pkparam.R                                406       0  100.00%
R/decorate_grob.R                            112       0  100.00%
R/desctools_binom_diff.R                     621      64  89.69%   53, 88-89, 125-126, 129, 199, 223-232, 264, 266, 286, 290, 294, 298, 353, 356, 359, 362, 422, 430, 439, 444-447, 454, 457, 466, 469, 516-517, 519-520, 522-523, 525-526, 593, 604-616, 620, 663, 676, 680
R/df_explicit_na.R                            30       0  100.00%
R/estimate_multinomial_rsp.R                  50       1  98.00%   63
R/estimate_proportion.R                      205      12  94.15%   78-85, 89, 94, 315, 481, 587
R/fit_rsp_step.R                              36       0  100.00%
R/fit_survival_step.R                         36       0  100.00%
R/formatting_functions.R                     183       2  98.91%   143, 278
R/g_forest.R                                 585      60  89.74%   241, 253-256, 261-262, 276, 278, 288-291, 336-339, 346, 415, 502, 515, 519-520, 525-526, 539, 555, 602, 633, 708, 717, 723, 742, 797-817, 820, 831, 850, 905, 908, 1043-1048
R/g_ipp.R                                    133       0  100.00%
R/g_km.R                                     350      57  83.71%   288-291, 310-312, 366-369, 403, 431, 435-478, 485-489
R/g_lineplot.R                               224      34  84.82%   175, 188, 196, 220, 224, 257-260, 336-343, 361-362, 366-367, 373-383, 475, 481, 483
R/g_step.R                                    68       1  98.53%   109
R/g_waterfall.R                               47       0  100.00%
R/h_adsl_adlb_merge_using_worst_flag.R        73       0  100.00%
R/h_biomarkers_subgroups.R                    45       0  100.00%
R/h_cox_regression.R                         110       0  100.00%
R/h_km.R                                     509      41  91.94%   137, 189-194, 287, 378, 380-381, 392-394, 413, 420-421, 423-425, 433-435, 460, 465-468, 651-654, 1108-1119
R/h_logistic_regression.R                    468       3  99.36%   203-204, 273
R/h_map_for_count_abnormal.R                  54       0  100.00%
R/h_pkparam_sort.R                            15       0  100.00%
R/h_response_biomarkers_subgroups.R           90      12  86.67%   50-55, 107-112
R/h_response_subgroups.R                     178      18  89.89%   257-270, 329-334
R/h_stack_by_baskets.R                        64       1  98.44%   89
R/h_step.R                                   180       0  100.00%
R/h_survival_biomarkers_subgroups.R           88       6  93.18%   111-116
R/h_survival_duration_subgroups.R            207      18  91.30%   259-271, 336-341
R/imputation_rule.R                           17       2  88.24%   54-55
R/incidence_rate.R                            96       7  92.71%   44-51
R/logistic_regression.R                      102       0  100.00%
R/missing_data.R                              21       3  85.71%   32, 66, 76
R/odds_ratio.R                               109       0  100.00%
R/prop_diff_test.R                            91       0  100.00%
R/prop_diff.R                                265      16  93.96%   62-65, 97, 282-289, 432, 492, 597
R/prune_occurrences.R                         57      10  82.46%   138-142, 188-192
R/response_biomarkers_subgroups.R             68       6  91.18%   189-194
R/response_subgroups.R                       192      10  94.79%   95-100, 276, 324-326
R/riskdiff.R                                  59       7  88.14%   102-105, 114, 124-125
R/rtables_access.R                            38       4  89.47%   159-162
R/score_occurrences.R                         20       1  95.00%   124
R/split_cols_by_groups.R                      49       0  100.00%
R/stat.R                                      59       3  94.92%   73-74, 129
R/summarize_ancova.R                         104       2  98.08%   172, 177
R/summarize_change.R                          30       0  100.00%
R/summarize_colvars.R                         10       0  100.00%
R/summarize_coxreg.R                         172       2  98.84%   203, 430
R/summarize_glm_count.R                      195      27  86.15%   206, 224-256, 301-302
R/summarize_num_patients.R                    93       5  94.62%   108-110, 244-245
R/summarize_patients_exposure_in_cols.R       96       1  98.96%   42
R/survival_biomarkers_subgroups.R             78       6  92.31%   113-118
R/survival_coxph_pairwise.R                   79      11  86.08%   45-46, 58-66
R/survival_duration_subgroups.R              197       6  96.95%   119-124
R/survival_time.R                             79       0  100.00%
R/survival_timepoint.R                       113       7  93.81%   120-126
R/utils_checkmate.R                           68       0  100.00%
R/utils_default_stats_formats_labels.R       116       1  99.14%   72
R/utils_factor.R                             109       2  98.17%   84, 302
R/utils_ggplot.R                             110       1  99.09%   54
R/utils_grid.R                               126       5  96.03%   164, 279-286
R/utils_rtables.R                            100       9  91.00%   39, 46, 51, 58-62, 403-404
R/utils_split_funs.R                          52       2  96.15%   82, 94
R/utils.R                                    141       7  95.04%   118, 121, 124, 128, 137-138, 332
TOTAL                                      10388     563  94.58%

Diff against main

Filename                             Stmts    Miss  Cover
---------------------------------  -------  ------  -------
R/survival_biomarkers_subgroups.R       +8       0  +0.88%
R/survival_duration_subgroups.R         +6       0  +0.10%
TOTAL                                  +14       0  +0.01%

Results for commit: 2d0c261

Minimum allowed coverage is 80%

♻️ This comment has been updated with latest results

Copy link
Contributor

github-actions bot commented Apr 19, 2024

Unit Tests Summary

    1 files     83 suites   1m 12s ⏱️
  834 tests   824 ✅  10 💤 0 ❌
1 798 runs  1 128 ✅ 670 💤 0 ❌

Results for commit 2d0c261.

♻️ This comment has been updated with latest results.

Copy link
Contributor

github-actions bot commented Apr 19, 2024

Unit Test Performance Difference

Additional test case details
Test Suite $Status$ Time on main $±Time$ Test Case
survival_biomarkers_subgroups 👶 $+0.63$ label_all_argument_to_extract_survival_subgroups_works_as_expected
survival_duration_subgroups 👶 $+0.54$ label_all_argument_to_extract_survival_subgroups_works_as_expected

Results for commit aba2d54

♻️ This comment has been updated with latest results.

Copy link
Contributor

@Melkiades Melkiades left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Lgtm! Thanks Emily ;)

@edelarua edelarua merged commit a788294 into main Apr 23, 2024
28 checks passed
@edelarua edelarua deleted the 1231_tab_surv_subgps_label_all@main branch April 23, 2024 12:12
@github-actions github-actions bot locked and limited conversation to collaborators Apr 23, 2024
Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
Projects
None yet
Development

Successfully merging this pull request may close these issues.

[Bug]: "label_all" dose not work in tabulate_survival_subgroups()
2 participants