Univariate Heterogeneous Treatment Effect Estimation
Author: Philippe Boileau
unihtee
provides tools for uncovering treatment effect modifiers in
high-dimensional data. Treatment effect modification is defined using
variable importance parameters based on absolute and relative effects.
Inference is performed about these variable importance measures using
nonparametric estimators. Users may use one-step or targeted maximum
likelihood estimators. Under general conditions, these estimators are
unbiased and efficient.
Additional details about this methodology is provided in Boileau et al. (2022) and in the package’s vignette.
The package may be installed from GitHub using
remotes
:
remotes::install_github("insightsengineering/unihtee")
unihtee
is under active development. Check back often for updates.
unihtee()
is the only user-facing function. It can be used to perform
inference about the treatment effect modification variable importance
parameters. These parameters are defined for data-generating processes
with continuous, binary and time-to-event outcomes with binary exposure
variables. Variable importance parameters based on absolute and relative
effects are available. Details are provided in the vignette.
We simulate some observational study data that contains ten pre-treatment covariates, of which are two treatment effect modifiers. We then perform inference about the absolute treatment effect modifier variable importance parameter, which is inspired by the average treatment effect.
library(unihtee)
library(MASS)
library(data.table)
library(sl3)
set.seed(510)
## create the dataset
n_obs <- 500
w <- mvrnorm(n = n_obs, mu = rep(0, 10), Sigma = diag(10))
confounder_names <- paste0("w_", seq_len(10))
colnames(w) <- confounder_names
a <- rbinom(n = n_obs, size = 1, prob = plogis(w[, 1] + w[, 2]))
y <- rnorm(n = n_obs, mean = w[, 1] + w[, 2] + a * w[, 3] - a * w[, 4])
dt <- as.data.table(cbind(w, a, y))
## targeted maximum likelihood estimates and testing procedure
unihtee(
data = dt,
confounders = confounder_names,
modifiers = confounder_names,
exposure = "a",
outcome = "y",
outcome_type = "continuous",
effect = "absolute",
estimator = "tmle"
)
#> modifier estimate se z p_value ci_lower
#> 1: w_3 1.044592804 0.1613285 6.47494319 9.484769e-11 0.72838896
#> 2: w_4 -0.869002514 0.1492388 -5.82289742 5.783606e-09 -1.16151066
#> 3: w_8 0.137803254 0.1137965 1.21096238 2.259098e-01 -0.08523784
#> 4: w_1 0.115258422 0.1160997 0.99275414 3.208298e-01 -0.11229692
#> 5: w_9 0.124150185 0.1300374 0.95472664 3.397160e-01 -0.13072315
#> 6: w_10 -0.097928234 0.1356976 -0.72166517 4.705004e-01 -0.36389554
#> 7: w_6 0.054845105 0.1159964 0.47281713 6.363437e-01 -0.17250792
#> 8: w_2 -0.064478504 0.1767632 -0.36477331 7.152806e-01 -0.41093441
#> 9: w_7 -0.014704981 0.1485331 -0.09900136 9.211372e-01 -0.30582989
#> 10: w_5 0.001500152 0.1103752 0.01359138 9.891560e-01 -0.21483526
#> ci_upper p_value_fdr
#> 1: 1.3607966 9.484769e-10
#> 2: -0.5764944 2.891803e-08
#> 3: 0.3608444 6.794319e-01
#> 4: 0.3428138 6.794319e-01
#> 5: 0.3790235 6.794319e-01
#> 6: 0.1680391 7.841673e-01
#> 7: 0.2821981 8.941008e-01
#> 8: 0.2819774 8.941008e-01
#> 9: 0.2764199 9.891560e-01
#> 10: 0.2178356 9.891560e-01
If you encounter any bugs or have any specific feature requests, please file an issue.
Contributions are very welcome. Interested contributors should consult our contribution guidelines prior to submitting a pull request.
To cite unihtee
and the papers introducing the underlying framework,
use the following BibTeX entries:
@manual{unihtee,
title = {unihtee: Univariate Heterogeneous Treatment Effect Estimation},
author = {Philippe Boileau},
note = {R package version 0.0.1}
}
@misc{boileau2023,
title={A nonparametric framework for treatment effect modifier discovery in high dimensions},
author={Philippe Boileau and Ning Leng and Nima S. Hejazi and Mark van der Laan and Sandrine Dudoit},
year={2023},
eprint={2304.05323},
archivePrefix={arXiv},
primaryClass={stat.ME}
}
@article{boileau2022,
author = {Boileau, Philippe and Qi, Nina Ting and van der Laan, Mark J and Dudoit, Sandrine and Leng, Ning},
title = {A flexible approach for predictive biomarker discovery},
journal = {Biostatistics},
year = {2022},
month = {07},
issn = {1465-4644},
doi = {10.1093/biostatistics/kxac029},
url = {https://doi.org/10.1093/biostatistics/kxac029}
}
The contents of this repository are distributed under the Apache 2.0
license. See the
LICENSE.md
and
LICENSE
files for details.
Boileau, Philippe, Nina Ting Qi, Mark J van der Laan, Sandrine Dudoit, and Ning Leng. 2022. “A flexible approach for predictive biomarker discovery.” Biostatistics, July. https://doi.org/10.1093/biostatistics/kxac029.