Skip to content
This repository has been archived by the owner on Oct 25, 2024. It is now read-only.

Commit

Permalink
Set trainer.save_model state_dict format to safetensors (#1227)
Browse files Browse the repository at this point in the history
  • Loading branch information
changwangss authored Feb 5, 2024
1 parent 4d095f7 commit 2eca8c1
Show file tree
Hide file tree
Showing 2 changed files with 67 additions and 67 deletions.
128 changes: 63 additions & 65 deletions intel_extension_for_transformers/transformers/modeling/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -124,85 +124,83 @@ def from_pretrained(cls, model_name_or_path: str, **kwargs):
model_class._keys_to_ignore_on_load_missing = missing_keys_to_ignore_on_load
else: # pragma: no cover
model_class._keys_to_ignore_on_load_missing.extend(missing_keys_to_ignore_on_load)

if not os.path.isdir(model_name_or_path) and not os.path.isfile(model_name_or_path): # pragma: no cover
from transformers.utils import cached_file
try:
# Load from URL or cache if already cached
resolved_weights_file = cached_file(
model_name_or_path,
filename=WEIGHTS_NAME,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
use_auth_token=use_auth_token,
)
except EnvironmentError as err: # pragma: no cover
logger.error(err)
msg = (
f"Can't load weights for '{model_name_or_path}'. Make sure that:\n\n"
f"- '{model_name_or_path}' is a correct model identifier "
f"listed on 'https://huggingface.co/models'\n (make sure "
f"'{model_name_or_path}' is not a path to a local directory with "
f"something else, in that case)\n\n- or '{model_name_or_path}' is "
f"the correct path to a directory containing a file "
f"named one of {WEIGHTS_NAME}\n\n"
)
if revision is not None:
msg += (f"- or '{revision}' is a valid git identifier "
f"(branch name, a tag name, or a commit id) that "
f"exists for this model name as listed on its model "
f"page on 'https://huggingface.co/models'\n\n"
)
raise EnvironmentError(msg)
else:
resolved_weights_file = os.path.join(model_name_or_path, WEIGHTS_NAME)
state_dict = torch.load(resolved_weights_file, {})
model = model_class.from_pretrained(
model_name_or_path,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
use_auth_token=use_auth_token,
revision=revision,
state_dict=state_dict,
**kwargs,
)

model_class._keys_to_ignore_on_load_unexpected = keys_to_ignore_on_load_unexpected
model_class._keys_to_ignore_on_load_missing = keys_to_ignore_on_load_missing
dataloader = kwargs.get("dataloader", None)

if not os.path.isdir(model_name_or_path) and not os.path.isfile(model_name_or_path): # pragma: no cover
# pylint: disable=E0611
if Version(transformers.__version__) < Version('4.22.0'):
from transformers.file_utils import cached_path, hf_bucket_url
weights_file = hf_bucket_url(model_name_or_path,
filename=WEIGHTS_NAME,
revision=revision)
try:
# Load from URL or cache if already cached
resolved_weights_file = cached_path(
weights_file,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
use_auth_token=use_auth_token,
)
except EnvironmentError as err: # pragma: no cover
logger.error(err)
msg = (
f"Can't load weights for '{model_name_or_path}'. Make sure that:\n\n"
f"- '{model_name_or_path}' is a correct model identifier "
f"listed on 'https://huggingface.co/models'\n (make sure "
f"'{model_name_or_path}' is not a path to a local directory with "
f"something else, in that case)\n\n- or '{model_name_or_path}' is "
f"the correct path to a directory containing a file "
f"named one of {WEIGHTS_NAME}\n\n"
)
if revision is not None:
msg += (f"- or '{revision}' is a valid git identifier "
f"(branch name, a tag name, or a commit id) that "
f"exists for this model name as listed on its model "
f"page on 'https://huggingface.co/models'\n\n"
)
raise EnvironmentError(msg)
else:
from transformers.utils import cached_file
try:
# Load from URL or cache if already cached
resolved_weights_file = cached_file(
model_name_or_path,
filename=WEIGHTS_NAME,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
use_auth_token=use_auth_token,
)
except EnvironmentError as err: # pragma: no cover
logger.error(err)
msg = (
f"Can't load weights for '{model_name_or_path}'. Make sure that:\n\n"
f"- '{model_name_or_path}' is a correct model identifier "
f"listed on 'https://huggingface.co/models'\n (make sure "
f"'{model_name_or_path}' is not a path to a local directory with "
f"something else, in that case)\n\n- or '{model_name_or_path}' is "
f"the correct path to a directory containing a file "
f"named one of {WEIGHTS_NAME}\n\n"
)
if revision is not None:
msg += (f"- or '{revision}' is a valid git identifier "
f"(branch name, a tag name, or a commit id) that "
f"exists for this model name as listed on its model "
f"page on 'https://huggingface.co/models'\n\n"
)
raise EnvironmentError(msg)
from transformers.utils import cached_file
try:
# Load from URL or cache if already cached
resolved_weights_file = cached_file(
model_name_or_path,
filename=WEIGHTS_NAME,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
use_auth_token=use_auth_token,
)
except EnvironmentError as err: # pragma: no cover
logger.error(err)
msg = (
f"Can't load weights for '{model_name_or_path}'. Make sure that:\n\n"
f"- '{model_name_or_path}' is a correct model identifier "
f"listed on 'https://huggingface.co/models'\n (make sure "
f"'{model_name_or_path}' is not a path to a local directory with "
f"something else, in that case)\n\n- or '{model_name_or_path}' is "
f"the correct path to a directory containing a file "
f"named one of {WEIGHTS_NAME}\n\n"
)
if revision is not None:
msg += (f"- or '{revision}' is a valid git identifier "
f"(branch name, a tag name, or a commit id) that "
f"exists for this model name as listed on its model "
f"page on 'https://huggingface.co/models'\n\n"
)
raise EnvironmentError(msg)

q_model = load(
resolved_weights_file, model,
Expand Down
6 changes: 4 additions & 2 deletions intel_extension_for_transformers/transformers/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -1981,7 +1981,8 @@ def _save(self, output_dir: Optional[str] = None, state_dict=None):
if is_pretrained:
if state_dict is None:
state_dict = unwrapped_model.state_dict()
unwrapped_model.save_pretrained(output_dir, state_dict=state_dict)
unwrapped_model.save_pretrained(output_dir, state_dict=state_dict,
safe_serialization=self.args.save_safetensors)
else:
logger.info(
"Trainer.model is not a `PreTrainedModel`, only saving its state dict.")
Expand All @@ -1993,7 +1994,8 @@ def _save(self, output_dir: Optional[str] = None, state_dict=None):
if self.enable_inc_quant and self.opt_model:
self._save_inc_int8(self.opt_model, output_dir)
else:
self.model.save_pretrained(output_dir, state_dict=state_dict)
self.model.save_pretrained(output_dir, state_dict=state_dict,
safe_serialization=self.args.save_safetensors)
if self.tokenizer is not None: # pragma: no cover
self.tokenizer.save_pretrained(output_dir)

Expand Down

0 comments on commit 2eca8c1

Please sign in to comment.