Skip to content
This repository has been archived by the owner on Oct 25, 2024. It is now read-only.

add initial version of rl_training #634

Merged
merged 1 commit into from
Nov 23, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -43,3 +43,25 @@ multi card finetunes
```
python ../instruction/gaudi_spawn.py --world_size 8 --use_mpi reward_modeling.py --model_name_or_path meta-llama/Llama-2-7b-hf --output_dir <output> --log_level info --num_train_epochs 1 --use_habana --use_lazy_mode --hf_access_token xxxxxx --ddp_find_unused_parameters True
```

## 5. Reinforcement Fine-tuning

### Training on CUDA
```
accelerate launch --multi_gpu --num_machines 1 --num_processes 8 rl_training.py --log_with=wandb --model_name=meta-llama/Llama-2-7b-hf --reward_model_name=output_se --adafactor=False --tokenizer_name=meta-llama/Llama-2-7b-hf --save_freq=100 --output_max_length=128 --batch_size=8 --gradient_accumulation_steps=8 --batched_gen=True --ppo_epochs=4 --seed=0 --learning_rate=1.4e-5 --early_stopping=True --output_dir=llama-se-rl-finetune-128-8-8-1.4e-5_adam --hf_access_token xxxxxx
```

### Training on Habana

Follow install guidance in [optimum-habana](https://github.com/huggingface/optimum-habana)

single card finetune

```
python3 rl_training.py --model_name=meta-llama/Llama-2-7b-hf --reward_model_name=<output_rm> --adafactor=False --tokenizer_name=meta-llama/Llama-2-7b-hf --save_freq=100 --output_max_length=128 --batch_size=8 --mini_batch_size=1 --gradient_accumulation_steps=8 --batched_gen=True --ppo_epochs=4 --seed=0 --learning_rate=1.4e-5 --early_stopping=True --output_dir=llama-se-rl-finetune-128-8-8-1.4e-5_adam --hf_access_token xxxxxx --use_habana
```

multi card finetunes
```
python3 ../instruction/gaudi_spawn.py --world_size 8 --use_mpi rl_training.py --model_name=meta-llama/Llama-2-7b-hf --reward_model_name=<output_rm> --adafactor=False --tokenizer_name=meta-llama/Llama-2-7b-hf --save_freq=100 --output_max_length=128 --batch_size=8 --mini_batch_size=1 --gradient_accumulation_steps=8 --batched_gen=True --ppo_epochs=4 --seed=0 --learning_rate=1.4e-5 --early_stopping=True --output_dir=llama-se-rl-finetune-128-8-8-1.4e-5_adam --hf_access_token xxxxxx --use_habana
```
Original file line number Diff line number Diff line change
Expand Up @@ -5,3 +5,5 @@ datasets
bitsandbytes
evaluate
scikit-learn
intel-extension-for-transformers
tyro
Original file line number Diff line number Diff line change
Expand Up @@ -199,14 +199,14 @@ def preprocess_function(examples):
"input_ids_k": [],
"attention_mask_k": [],
}
for question, response_j, response_k in zip(
examples["question"], examples["chatgpt"], examples["llama2-13b-chat"]
for system, question, response_j, response_k in zip(
examples["system"], examples["question"], examples["chatgpt"], examples["llama2-13b-chat"]
):
tokenized_j = tokenizer(
"Question: " + question + "\n\nAnswer: " + response_j, truncation=True
system + question + response_j, truncation=True
)
tokenized_k = tokenizer(
"Question: " + question + "\n\nAnswer: " + response_k, truncation=True
system + question + response_k, truncation=True
)

new_examples["input_ids_j"].append(tokenized_j["input_ids"])
Expand Down
Loading
Loading