Skip to content

Sieves through structured and unstructured data. Responds to Query. AI. An RAG walkthrough.

License

Notifications You must be signed in to change notification settings

ironmanfpv/Data-Agent-with-RAG

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Data agent with RAG

Sieve through structured and unstructured Data. Respond to Query. AI This repository is an exercise walkthrough, a proof of concept of information sieveing with prompts. Data Agent with Python coding. LLM (leverages llama_index), Pylance, Pandas. Use cases : Data ingestion Q&A, Augmented Chatbots, Knowledge agents, analytics.

Setup

  1. Vs code/Terminal Command Prompt, To create the ai environment: For win: type: python -m venv ai

  2. To To activate the ai environment: -For win : type in command prompt: .\ai\Scripts\activate.bat ; Deactivate : replace activate -> deactivate -For mac : type: source ai/bin/activate

  3. type in command prompt : pip3 install llama-index pypdf python-dotenv pandas (install python packages and dependencies)

  4. create .env file with OPENAI_API_KEY , get API key and insert

Create Agent

  1. Gather data. Source type, csv, pdf, notes.

  2. Write the main.py file -Write imports.

  3. Ctrl+Shift+P : Select Python interpreter --> choose Global, then run.

  4. To activate ai environment, In command prompt, type : .\ai\Scripts\activate

  5. Create note_engine.py

About

Sieves through structured and unstructured data. Responds to Query. AI. An RAG walkthrough.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published