Skip to content

The repository of the paper "Cross-Inlining Binary Function Similarity Detection"

Notifications You must be signed in to change notification settings

island255/cross-inlining_binary_function_similarity

Repository files navigation

Scripts to train the cross-inlining model

Given the raw binaries compiled by different architectures, compiler and optimizations, here are the scripts to generate the datasets for cross-inlining.

Dataset

The dataset can download from https://drive.google.com/file/d/1K9ef-OoRBr0X5u8g2mlnYqh9o1i6zFij/view and https://drive.google.com/file/d/1wt7GY-DDp8J_2zeBBVUrcfWIyerg_xLO/view. It is contructed using Binkit (https://github.com/SoftSec-KAIST/BinKit).

workflow

This repository use the code from repository https://github.com/Cisco-Talos/binary_function_similarity. Please aslo refer it for the details.

  1. use IDA_scripts/IDA_flowchart to get all the functions information in the inline binaries and noinline binaries

  2. use preprocessing_for_cross_inlining/generate_selected_dataset.py to generate the selected_dataset.json

  3. use IDA_scripts/IDA_acfg_disasm to disassemble the binaries and functions

  4. use the preprocessing_for_cross_inlining/construct_ground_truth.py to get cross-inlining dataset

  5. use the training_for_cross_inlining/Model/Preprocessing to process the dataset inline and dataset noinline

    5.0 build docker for preprocessing

    docker build --no-cache Preprocessing/ -t gnn-preprocessing

    5.1 processing for dataset noinline (use the processed results in noinline) -- dataset-2

     docker run --rm \
         -v $(pwd)/../../DBs/Dataset-2/features/training/acfg_disasm_Dataset-2_training:/input \
         -v $(pwd)/Preprocessing/Dataset-2_training:/output \
         -it gnn-preprocessing /code/gnn_preprocessing.py -i /input --training -o /output
    docker run --rm \
        -v $(pwd)/../../DBs/Dataset-2/features/validation/acfg_disasm_Dataset-2_validation:/input \
        -v $(pwd)/Preprocessing/Dataset-2_training:/training_data \
        -v $(pwd)/Preprocessing/Dataset-2_validation:/output \
        -it gnn-preprocessing /code/gnn_preprocessing.py -i /input -d /training_data/opcodes_dict.json -o /output
    docker run --rm \
        -v $(pwd)/../../DBs/Dataset-2/features/testing/acfg_disasm_Dataset-2_testing:/input \
        -v $(pwd)/Preprocessing/Dataset-2_training:/training_data \
        -v $(pwd)/Preprocessing/Dataset-2_testing:/output \
        -it gnn-preprocessing /code/gnn_preprocessing.py -i /input -d /training_data/opcodes_dict.json -o /output

    5.2 processing for dataset inline (use the opcode dict obtained in noinline) -- dataset-1

    docker run --rm     \
       -v $(pwd)/../../DBs/Dataset-1/features/training/acfg_disasm_Dataset-1_training:/input  \
       -v $(pwd)/Preprocessing/Dataset-2_training:/training_data    \
       -v $(pwd)/Preprocessing/Dataset-1_training:/output     \
       -it gnn-preprocessing /code/gnn_preprocessing.py \
       -i /input -d /training_data/opcodes_dict.json -o /output
    docker run --rm     \
        -v $(pwd)/../../DBs/Dataset-1/features/validation/acfg_disasm_Dataset-1_validation:/input  \
        -v $(pwd)/Preprocessing/Dataset-2_training:/training_data    \
        -v $(pwd)/Preprocessing/Dataset-1_validation:/output    \
        -it gnn-preprocessing /code/gnn_preprocessing.py \
        -i /input -d /training_data/opcodes_dict.json -o /output
    docker run --rm     \
        -v $(pwd)/../../DBs/Dataset-1/features/testing/acfg_disasm_Dataset-1_testing:/input  \
        -v $(pwd)/Preprocessing/Dataset-2_training:/training_data    \
        -v $(pwd)/Preprocessing/Dataset-1_testing:/output     \
        -it gnn-preprocessing /code/gnn_preprocessing.py \
        -i /input -d /training_data/opcodes_dict.json -o /output
  6. use training_for_cross_inlining/concentrate_dataset_1_and_2.py to combine two dataset

  7. build_docker for model training

    docker build --no-cache NeuralNetwork/ -t gnn-neuralnetwork_base
    nvidia-docker run \
        -v $(pwd)/../../DBs:/input \
        -v $(pwd)/Preprocessing:/preprocessing \
        -v $(pwd)/NeuralNetwork_cross_inlining/:/output \
        -v $(pwd)/NeuralNetwork_cross_inlining/code:/code \
        --name gnn-neuralnetwork_cross_inlining \
        -it gnn-neuralnetwork_base 

    change line 77 in training_for_cross_inlining\Model\code\core\config.py to respectively train model for pattern1 pattern2 pattern3

    python3 /code/gnn.py --train --num_epochs 128 \
        --model_type embedding --training_mode pair \
        --features_type opc --dataset one \
        -c /output/model_checkpoint_pattern1_epoch_128 \
        -o /output/Dataset_cross_inlining_training_GSSN_opc_pair_pattern1_epoch_128

License

The code in this repository is licensed under the MIT License, however, some models and scripts depend on code with different licenses.

The GNN models contain part of the original source code which is licensed under Apache License 2.0.

About

The repository of the paper "Cross-Inlining Binary Function Similarity Detection"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published