Skip to content

Commit

Permalink
Sklearn decisiontree (#23565)
Browse files Browse the repository at this point in the history
Co-authored-by: umairjavaid <bscs13024@itu.edu.pk>
  • Loading branch information
HaiderSultanArc and umairjavaid authored Sep 13, 2023
1 parent ed7e8e0 commit 7cdf650
Show file tree
Hide file tree
Showing 4 changed files with 585 additions and 180 deletions.
196 changes: 161 additions & 35 deletions ivy/functional/frontends/sklearn/tree/_tree.py
Original file line number Diff line number Diff line change
@@ -1,31 +1,33 @@
import ivy


import numpy as np


from scipy.sparse import issparse
from scipy.sparse import csr_matrix
from scipy.sparse import isspmatrix_csr



# =============================================================================
# Types and constants
# =============================================================================

from numpy import float32 as DTYPE
from numpy import float64 as DOUBLE

EPSILON = np.finfo(np.double).eps

# Define constants
INFINITY = np.inf
EPSILON = np.finfo(np.double).eps

# Some handy constants (BestFirstTreeBuilder)
IS_FIRST = 1
IS_LEFT = 1
IS_NOT_FIRST = 0
IS_LEFT = 1
IS_NOT_LEFT = 0

TREE_LEAF = -1
TREE_UNDEFINED = -2
_TREE_LEAF = TREE_LEAF
_TREE_UNDEFINED = TREE_UNDEFINED


class SplitRecord:
Expand All @@ -49,14 +51,17 @@ def __init__(self):
self.missing_go_to_left = None


dummy = Node()
# Create a numpy dtype for Node using the dummy object
NODE_DTYPE = np.asarray([dummy], dtype=object).dtype

# =============================================================================
# TreeBuilder
# =============================================================================


class TreeBuilder:
"""Interface for different tree building strategies."""

def __init__(self):
self.splitter = None
self.min_samples_split = None
Expand All @@ -82,12 +87,10 @@ def _check_input(
y,
sample_weight,
):
"""Check input dtype, layout, and format."""
"""Check input dtype, layout, and format"""
if issparse(X):
X = (
X.tocsc()
) # tocsc() is a method provided by the scipy.sparse module in the SciPy library. It's used to convert a sparse matrix to the Compressed Sparse Column (CSC) format.
X.sort_indices() # This is done to ensure that the indices of non-zero elements within the matrix are sorted in ascending order.
X = X.tocsc() #tocsc() is a method provided by the scipy.sparse module in the SciPy library. It's used to convert a sparse matrix to the Compressed Sparse Column (CSC) format.
X.sort_indices() #This is done to ensure that the indices of non-zero elements within the matrix are sorted in ascending order.

if X.data.dtype != DTYPE:
X.data = np.ascontiguousarray(X.data, dtype=DTYPE)
Expand Down Expand Up @@ -126,6 +129,144 @@ def __init__(
self.n_constant_features = n_constant_features


class DepthFirstTreeBuilder(TreeBuilder):
"""Build a decision tree in depth-first fashion."""

def __init__(
self, splitter, min_samples_split,
min_samples_leaf, min_weight_leaf,
max_depth, min_impurity_decrease
):
self.splitter = splitter
self.min_samples_split = min_samples_split
self.min_samples_leaf = min_samples_leaf
self.min_weight_leaf = min_weight_leaf
self.max_depth = max_depth
self.min_impurity_decrease = min_impurity_decrease

def build(
self,
tree,
X,
y,
sample_weight=None,
missing_values_in_feature_mask=None
):
"""Build a decision tree from the training set (X, y)."""

# Check input
X, y, sample_weight = self._check_input(X, y, sample_weight)

# Initial capacity
init_capacity = (2 ** (tree.max_depth + 1)) - 1 if tree.max_depth <= 10 else 2047

tree._resize(init_capacity)

# Parameters
splitter = self.splitter
max_depth = self.max_depth
min_samples_leaf = self.min_samples_leaf
min_weight_leaf = self.min_weight_leaf
min_samples_split = self.min_samples_split
min_impurity_decrease = self.min_impurity_decrease

# Recursive partition (without actual recursion)
splitter.init(X, y, sample_weight, missing_values_in_feature_mask)

stack = []

# Push root node onto stack
stack.append(
StackRecord(
start=0,
end=splitter.n_samples,
depth=0,
parent=_TREE_UNDEFINED,
is_left=False,
impurity=INFINITY,
n_constant_features=0
)
)
weighted_n_node_samples = np.zeros(1, dtype=np.double)
while stack:
stack_record = stack.pop()

start = stack_record.start
end = stack_record.end
depth = stack_record.depth
parent = stack_record.parent
is_left = stack_record.is_left
impurity = stack_record.impurity
n_constant_features = stack_record.n_constant_features

n_node_samples = end - start
splitter.node_reset(start, end, weighted_n_node_samples)

is_leaf = (
depth >= max_depth
or n_node_samples < min_samples_split
or n_node_samples < 2 * min_samples_leaf
or np.sum(sample_weight[start:end]) < 2 * min_weight_leaf
)

if is_left:
impurity = splitter.node_impurity()

is_leaf = is_leaf or impurity <= EPSILON

if not is_leaf:
split = SplitRecord() # No idea what is SplitRecord in original code. Maybe this never gets called, not sure
splitter.node_split(impurity, split, n_constant_features)
is_leaf = (
is_leaf
or split.pos >= end
or (split.improvement + EPSILON < min_impurity_decrease)
)

node_id = tree._add_node(
parent,
is_left,
is_leaf,
split.feature if not is_leaf else 0,
split.threshold if not is_leaf else 0,
impurity,
n_node_samples,
np.sum(sample_weight[start:end]),
split.missing_go_to_left,
)

if node_id == np.iinfo(np.intp).max:
raise MemoryError()

splitter.node_value(tree.value + node_id * tree.value_stride)

if not is_leaf:
# Push right child on stack
stack.append(
StackRecord(
start=split.pos,
end=end,
depth=depth + 1,
parent=node_id,
is_left=False,
impurity=split.impurity_right,
n_constant_features=n_constant_features,
)
)
# Push left child on stack
stack.append(
StackRecord(
start=start,
end=split.pos,
depth=depth + 1,
parent=node_id,
is_left=True,
impurity=split.impurity_left,
n_constant_features=n_constant_features,
)
)


class Tree:
def __init__(self, n_features, n_classes, n_outputs):
"""Constructor."""
Expand Down Expand Up @@ -190,9 +331,7 @@ def __setstate__(self, d):

def _resize(self, capacity):
"""
Resize all inner arrays to `capacity`.
If `capacity` is -1, then double the size of the inner arrays.
Resize all inner arrays to `capacity`. If `capacity` is -1, then double the size of the inner arrays.
Returns -1 in case of failure to allocate memory (and raise MemoryError), or 0 otherwise.
"""
if self._resize_c(capacity) != 0:
Expand Down Expand Up @@ -258,9 +397,7 @@ def _add_node(
# if self._resize_c() != 0:
# return -1 #throw error if resize not possible

node = (
Node()
) # self.nodes contains a list of nodes, it returns the node at node_id location
node = Node() #self.nodes contains a list of nodes, it returns the node at node_id location
self.nodes.append(node)
node.impurity = impurity
node.n_node_samples = n_node_samples
Expand Down Expand Up @@ -294,9 +431,7 @@ def predict(self, X):
# Get the internal data as a NumPy array
internal_data = self._get_value_ndarray()
# Use the predictions to index the internal data
out = internal_data[
predictions
] # not sure if this accurately translates to .take(self.apply(X), axis=0, mode='clip')
out = internal_data[predictions] #not sure if this accurately translates to .take(self.apply(X), axis=0, mode='clip')
# Reshape the output if the model is single-output
if self.n_outputs == 1:
out = out.reshape(X.shape[0], self.max_n_classes)
Expand Down Expand Up @@ -427,7 +562,7 @@ def _decision_path_dense(self, X):
indices[indptr[i + 1]] = node - self.nodes
indptr[i + 1] += 1

indices = indices[: indptr[n_samples]]
indices = indices[:indptr[n_samples]]
data = np.ones(shape=len(indices), dtype=np.intp)
out = csr_matrix((data, indices, indptr), shape=(n_samples, self.node_count))

Expand Down Expand Up @@ -488,7 +623,7 @@ def _decision_path_sparse_csr(self, X):
indices[indptr[i + 1]] = node - self.nodes
indptr[i + 1] += 1

indices = indices[: indptr[n_samples]]
indices = indices[:indptr[n_samples]]
data = np.ones(shape=len(indices), dtype=np.intp)
out = csr_matrix((data, indices, indptr), shape=(n_samples, self.node_count))

Expand All @@ -497,7 +632,6 @@ def _decision_path_sparse_csr(self, X):
def compute_node_depths(self):
"""
Compute the depth of each node in a tree.
.. versionadded:: 1.3
Returns
Expand Down Expand Up @@ -606,20 +740,12 @@ def compute_partial_dependence(self, X, target_features, out):

if current_node.left_child == _TREE_LEAF:
# Leaf node
out[sample_idx] += (
weight_stack[stack_size] * self.value[current_node_idx]
)
out[sample_idx] += weight_stack[stack_size] * self.value[current_node_idx]
total_weight += weight_stack[stack_size]
else:
is_target_feature = any(
target_feature == current_node.feature
for target_feature in target_features
)
is_target_feature = any(target_feature == current_node.feature for target_feature in target_features)
if is_target_feature:
if (
X[sample_idx, current_node.feature]
<= current_node.threshold
):
if X[sample_idx, current_node.feature] <= current_node.threshold:
node_idx_stack.append(current_node.left_child)
weight_stack.append(weight_stack[stack_size])
stack_size += 1
Expand Down
Loading

0 comments on commit 7cdf650

Please sign in to comment.