Skip to content

Discretization tools for finite volume and inverse problems.

License

Notifications You must be signed in to change notification settings

jcapriot/discretize

 
 

Repository files navigation

Discretize Logo

discretize

Latest PyPI version Latest conda-forge version MIT license Azure pipelines build status Coverage status https://img.shields.io/discourse/users?server=http%3A%2F%2Fsimpeg.discourse.group%2F https://img.shields.io/badge/Slack-simpeg-4B0082.svg?logo=slack https://img.shields.io/badge/Youtube%20channel-GeoSci.xyz-FF0000.svg?logo=youtube

discretize - A python package for finite volume discretization.

The vision is to create a package for finite volume simulation with a focus on large scale inverse problems. This package has the following features:

  • modular with respect to the spacial discretization
  • built with the inverse problem in mind
  • supports 1D, 2D and 3D problems
  • access to sparse matrix operators
  • access to derivatives to mesh variables

https://raw.githubusercontent.com/simpeg/figures/master/finitevolume/cell-anatomy-tensor.png

Currently, discretize supports:

  • Tensor Meshes (1D, 2D and 3D)
  • Cylindrically Symmetric Meshes
  • QuadTree and OcTree Meshes (2D and 3D)
  • Logically Rectangular Meshes (2D and 3D)
  • Triangular (2D) and Tetrahedral (3D) Meshes

Installing

discretize is on conda-forge

conda install -c conda-forge discretize

discretize is on pypi

pip install discretize

To install from source

git clone https://github.com/simpeg/discretize.git
python setup.py install

Citing discretize

Please cite the SimPEG paper when using discretize in your work:

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Links

Website: http://simpeg.xyz

Documentation: http://discretize.simpeg.xyz

Code: https://github.com/simpeg/discretize

Tests: https://travis-ci.org/simpeg/discretize

Bugs & Issues: https://github.com/simpeg/discretize/issues

Questions: http://simpeg.discourse.group/

Chat: http://slack.simpeg.xyz/

About

Discretization tools for finite volume and inverse problems.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 80.3%
  • Cython 15.1%
  • C++ 4.6%