Ready-to-use Docker images for the spaCy NLP library.
spaCy API Docker is being sponsored by the following tool; please help to support us by taking a look and signing up to a free trial
- Use the awesome spaCy NLP framework with other programming languages.
- Better scaling: One NLP - multiple services.
- Build using the official spaCy REST services.
- Dependency parsing visualisation with displaCy.
- Docker images for English, German, Spanish, Italian, Dutch and French.
- Automated builds to stay up to date with spaCy.
- Current spaCy version: 2.0.16
Please note that this is a completely new API and is incompatible with the previous one. If you still need them, use jgontrum/spacyapi:en-legacy
or jgontrum/spacyapi:de-legacy
.
Documentation, API- and frontend code based upon spaCy REST services by Explosion AI.
Image | Description |
---|---|
jgontrum/spacyapi:base_v2 | Base image for spaCy 2.0, containing no language model |
jgontrum/spacyapi:en_v2 | English language model, spaCy 2.0 |
jgontrum/spacyapi:de_v2 | German language model, spaCy 2.0 |
jgontrum/spacyapi:es_v2 | Spanish language model, spaCy 2.0 |
jgontrum/spacyapi:fr_v2 | French language model, spaCy 2.0 |
jgontrum/spacyapi:pt_v2 | Portuguese language model, spaCy 2.0 |
jgontrum/spacyapi:it_v2 | Italian language model, spaCy 2.0 |
jgontrum/spacyapi:nl_v2 | Dutch language model, spaCy 2.0 |
jgontrum/spacyapi:all_v2 | Contains EN, DE, ES, PT, NL, IT and FR language models, spaCy 2.0 |
OLD RELEASES | |
jgontrum/spacyapi:base | Base image, containing no language model |
jgontrum/spacyapi:latest | English language model |
jgontrum/spacyapi:en | English language model |
jgontrum/spacyapi:de | German language model |
jgontrum/spacyapi:es | Spanish language model |
jgontrum/spacyapi:fr | French language model |
jgontrum/spacyapi:all | Contains EN, DE, ES and FR language models |
jgontrum/spacyapi:en-legacy | Old API with English model |
jgontrum/spacyapi:de-legacy | Old API with German model |
docker run -p "127.0.0.1:8080:80" jgontrum/spacyapi:en_v2
All models are loaded at start up time. Depending on the model size and server performance, this can take a few minutes.
The displaCy frontend is available at /ui
.
version: '2'
services:
spacyapi:
image: jgontrum/spacyapi:en_v2
ports:
- "127.0.0.1:8080:80"
restart: always
In order to run unit tests locally pytest
is included.
docker run -it jgontrum/spacyapi:en_v2 app/env/bin/pytest app/displacy_service_tests
The API includes rudimentary support for specifying special cases for your deployment. Currently only basic special cases are supported; for example, in the spaCy parlance:
tokenizer.add_special_case("isn't", [{ORTH: "isn't"}])
They can be supplied in an environment variable corresponding to the desired language model. For example, en_special_cases
or en_core_web_lg_special_cases
. They are configured as a single comma-delimited string, such as "isn't,doesn't,won't"
.
Use the following syntax to specify basic special case rules, such as for preserving contractions:
docker run -p "127.0.0.1:8080:80" -e en_special_cases="isn't,doesn't" jgontrum/spacyapi:en_v2
You can also configure this in a .env
file if using docker-compose
as above.
displaCy frontend is available here.
Example request:
{
"text": "They ate the pizza with anchovies",
"model": "en",
"collapse_punctuation": 0,
"collapse_phrases": 1
}
Name | Type | Description |
---|---|---|
text |
string | text to be parsed |
model |
string | identifier string for a model installed on the server |
collapse_punctuation |
boolean | Merge punctuation onto the preceding token? |
collapse_phrases |
boolean | Merge noun chunks and named entities into single tokens? |
Example request using the Python Requests library:
import json
import requests
url = "http://localhost:8000/dep"
message_text = "They ate the pizza with anchovies"
headers = {'content-type': 'application/json'}
d = {'text': message_text, 'model': 'en'}
response = requests.post(url, data=json.dumps(d), headers=headers)
r = response.json()
Example response:
{
"arcs": [
{ "dir": "left", "start": 0, "end": 1, "label": "nsubj" },
{ "dir": "right", "start": 1, "end": 2, "label": "dobj" },
{ "dir": "right", "start": 1, "end": 3, "label": "prep" },
{ "dir": "right", "start": 3, "end": 4, "label": "pobj" },
{ "dir": "left", "start": 2, "end": 3, "label": "prep" }
],
"words": [
{ "tag": "PRP", "text": "They" },
{ "tag": "VBD", "text": "ate" },
{ "tag": "NN", "text": "the pizza" },
{ "tag": "IN", "text": "with" },
{ "tag": "NNS", "text": "anchovies" }
]
}
Name | Type | Description |
---|---|---|
arcs |
array | data to generate the arrows |
dir |
string | direction of arrow ("left" or "right" ) |
start |
integer | offset of word the arrow starts on |
end |
integer | offset of word the arrow ends on |
label |
string | dependency label |
words |
array | data to generate the words |
tag |
string | part-of-speech tag |
text |
string | token |
Curl command:
curl -s localhost:8000/dep -d '{"text":"Pastafarians are smarter than people with Coca Cola bottles.", "model":"en"}'
{
"arcs": [
{
"dir": "left",
"end": 1,
"label": "nsubj",
"start": 0
},
{
"dir": "right",
"end": 2,
"label": "acomp",
"start": 1
},
{
"dir": "right",
"end": 3,
"label": "prep",
"start": 2
},
{
"dir": "right",
"end": 4,
"label": "pobj",
"start": 3
},
{
"dir": "right",
"end": 5,
"label": "prep",
"start": 4
},
{
"dir": "right",
"end": 6,
"label": "pobj",
"start": 5
}
],
"words": [
{
"tag": "NNPS",
"text": "Pastafarians"
},
{
"tag": "VBP",
"text": "are"
},
{
"tag": "JJR",
"text": "smarter"
},
{
"tag": "IN",
"text": "than"
},
{
"tag": "NNS",
"text": "people"
},
{
"tag": "IN",
"text": "with"
},
{
"tag": "NNS",
"text": "Coca Cola bottles."
}
]
}
Example request:
{
"text": "When Sebastian Thrun started working on self-driving cars at Google in 2007, few people outside of the company took him seriously.",
"model": "en"
}
Name | Type | Description |
---|---|---|
text |
string | text to be parsed |
model |
string | identifier string for a model installed on the server |
Example request using the Python Requests library:
import json
import requests
url = "http://localhost:8000/ent"
message_text = "When Sebastian Thrun started working on self-driving cars at Google in 2007, few people outside of the company took him seriously."
headers = {'content-type': 'application/json'}
d = {'text': message_text, 'model': 'en'}
response = requests.post(url, data=json.dumps(d), headers=headers)
r = response.json()
Example response:
[
{ "end": 20, "start": 5, "type": "PERSON" },
{ "end": 67, "start": 61, "type": "ORG" },
{ "end": 75, "start": 71, "type": "DATE" }
]
Name | Type | Description |
---|---|---|
end |
integer | character offset the entity ends after |
start |
integer | character offset the entity starts on |
type |
string | entity type |
curl -s localhost:8000/ent -d '{"text":"Pastafarians are smarter than people with Coca Cola bottles.", "model":"en"}'
[
{
"end": 12,
"start": 0,
"text": "Pastafarians",
"type": "NORP"
},
{
"end": 51,
"start": 42,
"text": "Coca Cola",
"type": "ORG"
}
]
Example request:
{
"text": "In 2012 I was a mediocre developer. But today I am at least a bit better.",
"model": "en"
}
Name | Type | Description |
---|---|---|
text |
string | text to be parsed |
model |
string | identifier string for a model installed on the server |
Example request using the Python Requests library:
import json
import requests
url = "http://localhost:8000/sents"
message_text = "In 2012 I was a mediocre developer. But today I am at least a bit better."
headers = {'content-type': 'application/json'}
d = {'text': message_text, 'model': 'en'}
response = requests.post(url, data=json.dumps(d), headers=headers)
r = response.json()
Example response:
["In 2012 I was a mediocre developer.", "But today I am at least a bit better."]
Combination of /sents
and /dep
, returns sentences and dependency parses
Example request:
{
"text": "In 2012 I was a mediocre developer. But today I am at least a bit better.",
"model": "en"
}
Name | Type | Description |
---|---|---|
text |
string | text to be parsed |
model |
string | identifier string for a model installed on the server |
Example request using the Python Requests library:
import json
import requests
url = "http://localhost:8000/sents_dep"
message_text = "In 2012 I was a mediocre developer. But today I am at least a bit better."
headers = {'content-type': 'application/json'}
d = {'text': message_text, 'model': 'en'}
response = requests.post(url, data=json.dumps(d), headers=headers)
r = response.json()
Example response:
[
{
"sentence": "In 2012 I was a mediocre developer.",
"dep_parse": {
"arcs": [
{
"dir": "left",
"end": 3,
"label": "prep",
"start": 0,
"text": "In"
},
{
"dir": "right",
"end": 1,
"label": "pobj",
"start": 0,
"text": "2012"
},
{
"dir": "left",
"end": 3,
"label": "nsubj",
"start": 2,
"text": "I"
},
{
"dir": "left",
"end": 6,
"label": "det",
"start": 4,
"text": "a"
},
{
"dir": "left",
"end": 6,
"label": "amod",
"start": 5,
"text": "mediocre"
},
{
"dir": "right",
"end": 6,
"label": "attr",
"start": 3,
"text": "developer"
},
{
"dir": "right",
"end": 7,
"label": "punct",
"start": 3,
"text": "."
}
],
"words": [
{
"tag": "IN",
"text": "In"
},
{
"tag": "CD",
"text": "2012"
},
{
"tag": "PRP",
"text": "I"
},
{
"tag": "VBD",
"text": "was"
},
{
"tag": "DT",
"text": "a"
},
{
"tag": "JJ",
"text": "mediocre"
},
{
"tag": "NN",
"text": "developer"
},
{
"tag": ".",
"text": "."
}
]
}
},
{
"sentence": "But today I am at least a bit better.",
"dep_parse": {
"arcs": [
{
"dir": "left",
"end": 11,
"label": "cc",
"start": 8,
"text": "But"
},
{
"dir": "left",
"end": 11,
"label": "npadvmod",
"start": 9,
"text": "today"
},
{
"dir": "left",
"end": 11,
"label": "nsubj",
"start": 10,
"text": "I"
},
{
"dir": "left",
"end": 13,
"label": "advmod",
"start": 12,
"text": "at"
},
{
"dir": "left",
"end": 15,
"label": "advmod",
"start": 13,
"text": "least"
},
{
"dir": "left",
"end": 15,
"label": "det",
"start": 14,
"text": "a"
},
{
"dir": "left",
"end": 16,
"label": "npadvmod",
"start": 15,
"text": "bit"
},
{
"dir": "right",
"end": 16,
"label": "acomp",
"start": 11,
"text": "better"
},
{
"dir": "right",
"end": 17,
"label": "punct",
"start": 11,
"text": "."
}
],
"words": [
{
"tag": "CC",
"text": "But"
},
{
"tag": "NN",
"text": "today"
},
{
"tag": "PRP",
"text": "I"
},
{
"tag": "VBP",
"text": "am"
},
{
"tag": "IN",
"text": "at"
},
{
"tag": "JJS",
"text": "least"
},
{
"tag": "DT",
"text": "a"
},
{
"tag": "NN",
"text": "bit"
},
{
"tag": "RBR",
"text": "better"
},
{
"tag": ".",
"text": "."
}
]
}
}
]
List the names of models installed on the server.
Example request:
GET /models
Example response:
["en", "de"]
Example request:
GET /en/schema
Name | Type | Description |
---|---|---|
model |
string | identifier string for a model installed on the server |
Example response:
{
"dep_types": ["ROOT", "nsubj"],
"ent_types": ["PERSON", "LOC", "ORG"],
"pos_types": ["NN", "VBZ", "SP"]
}
Show the used spaCy version.
Example request:
GET /version
Example response:
{
"spacy": "2.2.4"
}