(Errors in data, use images/vid only) Push Grasp - Clear Toys Adversarial - Efficientnet-B0 Test Results v0.3.1
Pre-release
Pre-release
ahundt
released this
03 Sep 21:26
·
137 commits
to grasp_pytorch0.4+
since this release
Please note: ERRORS IN COUNTING CODE, DO NOT USE THE COUNT INFO. VIDEOS AND IMAGES ARE OK
Push Grasp - Clear Toys Adversarial - 10 trials per scenario, 11 scenarios (110 total trials) - test preset cases
Testing iteration: 508
Change detected: True (value: 1129)
Primitive confidence scores: 1.476669 (push), 1.880263 (grasp)
Strategy: exploit (exploration probability: 0.000000)
Action: grasp at (5, 34, 140)
Executing: grasp at (-0.444000, -0.156000, 0.045688)
Trainer.get_label_value(): Current reward: 1.000000 Future reward: 1.887018 Expected reward: 1.000000 + 0.500000 x 1.887018 = 1.943509
Training loss: 0.030470
gripper position: 0.031651049852371216
gripper position: 0.02618650160729885
gripper position: 0.0022711530327796936
gripper position: 0.0028414130210876465
Grasp successful: True
Grasp Count: 445, grasp success rate: 0.5730337078651685
Time elapsed: 7.026935
Trainer iteration: 509.000000
Testing iteration: 509
Change detected: True (value: 330)
Primitive confidence scores: 1.593701 (push), 1.954336 (grasp)
Strategy: exploit (exploration probability: 0.000000)
Action: grasp at (11, 34, 108)
Executing: grasp at (-0.508000, -0.156000, 0.021827)
Trainer.get_label_value(): Current reward: 1.000000 Future reward: 1.923524 Expected reward: 1.000000 + 0.500000 x 1.923524 = 1.961762
Training loss: 0.013612
gripper position: 0.039991289377212524
gripper position: 0.027741700410842896
gripper position: 0.005253970623016357
gripper position: 0.002297341823577881
gripper position: 0.002274245023727417
gripper position: 0.002187401056289673
gripper position: 0.0003167688846588135
Grasp successful: True
Grasp Count: 446, grasp success rate: 0.5739910313901345
Time elapsed: 6.916038
Trainer iteration: 510.000000
Testing iteration: 510
There have not been changes to the objects for for a long time [push, grasp]: [0, 0], or there are not enough objects in view (value: 0)! Repositioning objects.
loading case file: /home/costar/src/costar_visual_stacking/simulation/test-cases/test-10-obj-05.txt
Test command:
export CUDA_VISIBLE_DEVICES="0" && python3 main.py --is_sim --obj_mesh_dir 'objects/toys' --num_obj 10 --push_rewards --experience_replay --explore_rate_decay --load_snapshot --snapshot_file '/home/costar/src/costar_visual_stacking/logs/2019-08-17.20:54:32-train-grasp-place-split-efficientnet-21k-acc-0.80/models/snapshot.reinforcement.pth' --random_seed 1238 --is_testing --save_visualizations --test_preset_cases --max_test_trials 10
Video:
action 360: