Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

update #14

Merged
merged 20 commits into from
Aug 30, 2021
Merged

update #14

merged 20 commits into from
Aug 30, 2021

Conversation

jiangjiajun
Copy link
Owner

Thanks for contributing to TVM! Please refer to guideline https://tvm.apache.org/docs/contribute/ for useful information and tips. After the pull request is submitted, please request code reviews from Reviewers by @ them in the pull request thread.

jcf94 and others added 20 commits August 26, 2021 12:33
* Update rewrite_simplify.cc

* Update test_arith_rewrite_simplify.py

* Update test_arith_rewrite_simplify.py

* Update test_arith_rewrite_simplify.py
* [AMP] Disallow fp16 conversion for summation-like ops

* test only structural equality
* [topi] add spconv2d_3x3 nhwc

* [relay] sparse_conv2d: add kernel_size attr

* [relay] add strategy for spconv2d_3x3 nhwc

* [relay] pass to convert spconv2d with const args

* [relay] convert sparse conv2d pass fixes

* use array for sparse conv2d attr

* fixup 1x1 tests; new 3x3 tests
Co-authored-by: Valery Chernov <valery.chernov@deelvin.com>
This should allow better scale-ability for AOT when targeting larger networks.
* fix some problems for matmul

* fix some problems for matmul

* add alpha parameter for matmul

* remove unnecessary condition

* add TranslatedLayer which support model loaded by jit.load

* add mul operator support

* Add padding mode support for conv/pool2d

* support 4 two-tuples

* add paddle test case

* add paddle conv2d  case

* update test_forward.py

* fix paddle convert_matmul

* add paddle multiply and matmul op test case

* add test case and fix bug

* delete import pandas

* add paddlepaddle tests

* modify the variable name of convert_reshape

* formatting

* formatting

* use black to format python code

* pylint check

* Remove fluid api

* black format

Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com>
Co-authored-by: wjj19950828 <wjjisloser@163.com>
Co-authored-by: heliqi <1101791222@qq.com>
Co-authored-by: Junru Shao <junrushao1994@gmail.com>
* Update graph_executor.h

* Update graph_executor.cc

* modify zero copy UT add set input zero copy

* modify C style

* add runtime test

* realy build  generatr the json

Co-authored-by: hwstaff <hwstaff@hwstaffdeMacBook-Pro.local>
…#8859)

A crash occurs when automatically deleting an instance of
CodeGenHexagon because the LLVMContext object has already been
freed. Objects of both types are created using unique_ptr, but
the object managed by the LLVMContext unique_ptr is passed to
CodeGenHexagon object (not as a unique_ptr).

This crash is fixed by moving the declaration of the LLVMContext
object before the CodeGenHexagon object. I'm not sure if this
is the best way to fix this, but it does fix the crash. Also,
in other files, the LLVMContext object is always created first.

Co-authored-by: Cahoon, Brendon <bcahoon@quicinc.com>
Add benchmarking that includes ovearhead of transfering inputs and
outputs to and from the device. This should give an accurate measurement
of the runtime a user would see when using the model. This is
accomplished by adding functions that run from inputs to return values
into the graph executor and the VM.
* [UnitTests] Expose TVM pytest helpers as plugin

Previously, pytest helper utilities such as automatic parametrization
of `target`/`dev`, or `tvm.testing.parameter` were only available for
tests within the `${TVM_HOME}/tests` directory.  This PR extracts the
helper utilities into an importable plugin, which can be used in
external tests (e.g. one-off debugging).

* [UnitTests] Refactor the plugin-specific logic out into plugin.py.

* [UnitTests] Moved marker definition out to global variable.
…gion detector (#8855)

* init

* fix

* Update src/tir/transforms/plan_update_buffer_allocation_location.cc

Co-authored-by: Ruihang Lai <lairuihangdongdong@qq.com>

* Update src/tir/transforms/plan_update_buffer_allocation_location.cc

Co-authored-by: Ruihang Lai <lairuihangdongdong@qq.com>

* address

Co-authored-by: Junru Shao <junrushao1994@gmail.com>
Co-authored-by: Ruihang Lai <lairuihangdongdong@qq.com>
* change workload keys

* remove binary string comparison

* append the tuple not every integer

* clean up

* lint

* dump workload keys to dags

* fix things

* change some strings

* misc fixes, add tests

* jostle ci
* fix: executor usage for keras tutorial

* fix: executor usage for onnx tutorial

* [Tutorial][Executor] Fix executors in tutorials
…able. (#8867)

* Simplify onnx input since name accesses are no longer supported.

* move Celu importer.
* [TIR] GetBlockReadWriteRegion

* Fix black issue

* Use constant reference for the interface

* Fix lint issue
* adding Manupa to the contributors list

* re-trigger CI
@jiangjiajun jiangjiajun merged commit 87ad400 into jiangjiajun:paddle_frontend Aug 30, 2021
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.